## $\sqrt{4} \rightarrow$

## - DSERIES M•1400 / M•1400i / M•1200



## SERVICE MANUAL



## CAUTION AVIS

RISK OF ELECTRIC SHOCK DO NOT OPEN RISQUE DE CHOC ELECTRIQUE NE PAS OUVRIR


CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK DO NOT REMOVE THE COVER
NO USER SERVICEABLE PARTS INSIDE REFER SERVICING TO QUALIFIED PERSONNEL

WARNING: TO REDUCE THE RISK OF FIRE OR ELECTRIC SHOCK, DO NOT EXPOSE THIS PRODUCT TO RAIN OR MOISTURE

TO PREVENT ELECTRIC SHOCK, DO NOT USE THIS POLARIZED PLUG WITH AN EXTENSION CORD, RECEPTACLE OR OTHER OUTLET UNLESS THE BLADES CAN BE FULLY INSERTED TO PREVENT BLADE EXPOSURE.

ATTENTION: POUR EVITER LES RISQUES DE CHOC ELECTRIQUE, NE PAS ENLEVER LE COUVERCLE. AUCUN ENTRETIEN DE PIECES INTERIEURES
PAR L'USAGER. CONFIER L'ENTRETIEN AU PERSONNEL QUALIFIE.

AVIS:POUR EVITER LES RISQUES D'INCENDIE OU D'ELECTROCUTION, N'EXPOSEZ PAS CET ARTICLE A LA PLUIE OU A L'HUMIDITE.

POUR PREVENIR LES CHOCS
ELECTRIQUES NE PAS UTILISER CETTE
FICHE POLARISEE AVEC UN PROLONGATEUR, UN PRISE DE courant ou une autre sortie de COURANT, SAUF SI LES LAMES PEUVENT ETRE INSEREES A FOND SANS LAISSER AUCUNE PARTIE A DECOUVERT.


The lightning flash with arrow head symbol within an equilateral triangle is intended to alert the user to the equilateral tria ngle is intended to alert the user to the presence of uninsulated "d ang erous volta ge"within the
product's enc losure, that may be of suffic ient magnitude to constitude a risk of electric shock to persons.
Le symbole éclair avec point de fléche à l'interieur d'un
tria ng le équila téralest utilisé pour a lerter l'utilisa te ur de la présence à linterieur du coffret de "vlotage dangereux"non isole d'a mpleur suffisa nte pour constituer un risque d'éléc troc ution.


The exc lamation point within an equila tera I tria ngle is intended to a lert the user to the presence of importa nt operating a nd maintenance (servicing) instructions in the litera ture a ccompanying the a ppliance.

Le point d'exclamation à l'intérieurd'un triangle de la présence d'instruc tionsimportantes pour le fonctionnement et l'entretien (service) dans le livret d'instruc ion a ccompagnant L'a p pareil.


## TABLE OF CONTENTS

INTRODUCTION ..... 2
SYSTEM OVERVIEW ..... 3
SUMMARY OF FEATURES ..... 4
SPECIFICATIO NS ..... 6
CIRCUITTHEORY ..... 8
INPUTCIRCUITRY ..... 8
POWER AMPUFIER CIRCUITRY ..... 8
PROTECTION CIRCUITS ..... 9
THERMALMANAGEMENT. ..... 10
SERVICE PROC EDURES. ..... 11
REQUIRED EQUIPMENT UST. ..... 11
TROUBLESHOOTING TIPS - OUTPUTFAILURES ..... 12
TESTAND BIASING PROCEDURE. ..... 13
PARTS ..... 15
QUICK PARTS ..... 15
CHASSIS ASSEMBLY ..... 16
HEATSINK ASSEMBLY ..... 18
COMPLEIE PARTS UST. ..... 20
SCHEMATICS/ PCB LAYOUTS. ..... 23
INPUTPCB SCHEMATIC ..... 23
INPUTPCB LAYOUT. ..... 24
DISPLAY PCB SCHEMATIC ..... 25
DISPLAY PCB LAYOUT. ..... 26
MAIN PCB SCHEMATICS ..... 27
MAIN PCB LAYOUT ..... 30
SOFT STARTPCB SC HEMATIC ..... 31
SOFTSTARTPCB LAYOUT. ..... 32

## INTRODUCTION

This ma nual conta ins complete service information for the $\mathrm{M} \bullet 1200, \mathrm{M} \bullet 1400$ and $\mathrm{M} \bullet 1400 \mathrm{i}$ audio power amplifiers. Operating instructions will be touched on briefly. For complete operating instructions refer to the owner's manual.

The FR SeriesTM $\mathrm{M} \cdot 1200$ and $\mathrm{M} \bullet 1400$ are high power audio a mplifiers designed for professional applications. They feature audiophile quality sound, excellent stability, extensive protection circuitry, and legendary Mackie reliability. Patented Fast Recovery circuitry allows the $M \cdot 1200 / M \cdot 1400$ to recover from clipping without generating undesirable artifacts.

## SERVIC E ON THE M• 1200/ M• 1400 IS TO BE PERFORMED BY EXPERIENCED TECHNICIANS ONLY!

To service the $M \cdot 1200 / M \cdot 1400$, technicians should be familiar with op-amps, disc rete a nalog circuitry, and troubleshooting high power solid state amplifiers. Presentation of this manual does not constitute endorsement of qualific ations by Mackie Designs.

## ! SMD !

The $M \cdot 1200 / \mathrm{M} \cdot 1400$ makes extensive use of surface mount components.
Servicing technic ians should have the tools and experience to perform surface mount rework.

## TECHNICAL SUPPORT

Mackie Designs Technic al Support Department is available 8AM - 5PM PST, Monday Friday at 1-800-258-6883 (outside US call 011-425-487-4333) Please feel free to call with any questions (Better safe than somy!).

## DISCLAIMER

The information conta ined in this manual is proprietary to Mackie Designs, Inc. The entire manual is protected under copyright and may not be reproduced by any means without express written permission from Mackie Designs, Inc.

## SYSTEM OVERVIEW

This section provides a quick summary of the $M \cdot 1200 / M \cdot 1400$ 's major features. It is not intended to take the place of the owner's manual. It is included here to help servicing technic ians fa milia nize themselves with the $\mathrm{M} \bullet 1200 / \mathrm{M} \bullet 1400$.

## DIFFERENCES BETWEEN THE M•1400, M•1400i AND M•1200

The $M \cdot 1200$ and $M \cdot 1400$ are electronic ally identic al products with the following exceptions:

1. The $M \bullet 1400$ has 12,000 uF main filter caps, where the $M \bullet 1200$ and $M \bullet 1400$ i have 10,000uF.
2. The $M \cdot 1400$ and $M \cdot 1400$ i use a more powerful fan than the $M \cdot 1200$.
3. The $M \cdot 1400$ has Speakon ${ }^{\oplus}$ connectors where the $M \bullet 1200$ and $M \bullet 1400$ i have $1 / 4$ " speaker outputs (both in addition to binding posts).
The $M \cdot 1200$ was discontinued in 1998 and replaced by the $M \cdot 1400$ i.
Export $M \cdot 1400$ 's also have a "Soft Start" circ uit that is not installed on Americ an units.

## FAST RECOVERY DESIGN

Solid state poweramplifiers have a reputation forsounding harsh when driven into clipping. The usual explanation is odd harmonicsgenerated by hard clipping, but in fact much of the unpleasant sound is caused by latching and parasitic oscillations that occur as the amplifier recovers from clipping.

TYPICAL AMPUFIER


MACKIE FR SERIESTM


Mackie's Fast Recovery design recovers from clipping quickly without generating any undesirable artifacts. This performance is achieved by two unique design elements; the Full Symmetry Dual Differential front end provides exc ellent linearity while minimizing the need fornegative feedback, and the Baker Clamp prevents output/driver device saturation. How these circuits operate is covered in depth in the circuit theory section.

## SUMMARY OF FEATURES

## FRONTPANEL

1. GAIN

Detented gain controls adjust the level sent to each output section. The gain structure is designed so that a $+4 \mathrm{dBu}(1.23 \mathrm{~V} \mathrm{~ms})$ input signal drives the amplifier to full rated power into $4 \Omega$.
2. MEIERS

The $M \cdot 1200 / M \cdot 1400$ 's meters indicate the relative output level of the amplifier referenced to full power. The SIG (signal present) senses the input prior to the gain control.
3. PROTECT

The Protect LEDs light indicating the channel has been muted for one of the following reasons:

- 4 second tum on delay
- Output devices beyond Safe Operating Area (SOA), also lights SHORTLED(s).
- Heatsink temperature beyond 80 degrees Celsius.


## 4. SHORT

The Short LEDs light to show that the amplifier has engaged protection due to a short or low impedance on the output.
5. TEMP STATUS

The HOTLED lights to indicate that the amplifierhasengaged protection due to heatsink temperature or power transfomer core temperature.
6. POWER SWITC H

This remarkable device requires years of study to full comprehend.

(1)
(2) (1)
(3) (4) (5)
(6)

## REAR PANEL

## 1. SPEAKER OUTPUTS

The $M \cdot 1400$ has Speakon ${ }^{\circledR}$ connectors where the $M \bullet 1200$ has $1 / 4$ " speaker outputs. Both models have binding posts. Forbridged mono operation, the +output comesfrom channel one's positive terminal and - from channel two's positive.

## 2. INPUT

The $\mathrm{M} \cdot 1200 / \mathrm{M} \cdot 1400$ has both XLR and $1 / 4^{\prime \prime}$ TRS inputs. They are electrically identic al (wired in parallel). In bridged mono or parallel mono mode channel 2 input is disabled.

## 3. THROUGH

Yet another jack wired in parallel with the Inputs, the through jack provides a convenient way to chain amplifiers or pass the signal to any other device.

## 4. LOW CUTFILTER

Sweeps the built in high pass filter from 10 Hz to 170 Hz .

## 5. CONSTANTDIRECTIVITY HORN EQ/AIR EQ

Built in shelving EQ provides high frequency compensation when using constant directivity homs.

## 6. AMP MODE

Three position slide switch selects STEREO, PARAயEL MONO or BRIDGE MONO operation. Channel One's input signal is used for PARAШEL MONO and BRIDGE MONO operation. AMP MODE and OUTPUTAPPUCATION switches should not be changed while the unit is on.

## 7. OUTPUTAPPUCATION

Placing the three position slide switch in its center position defeats the built in LIMITER for both channels. Selecting SUB WOOFER engages the built in low pass filter. The FREQUENCY switch selects between 125 Hz and 63 Hz cutoff for the low pass filter. In SUB WOO FER mode, inputs 1 and 2 are summed regardless of AMP MODE setting.
(Remember, human hearing is unable to discem direction at frequencies where the wavelenth is greater than the distance between your ears, $\sim 250 \mathrm{~Hz}$ unless you have a grossly large head!)


## SPECIFICATIONS

## CONTINUOUS AVERAGE OUTPUT

 POWER, BOTH CHANNELS DRIVEN:
## M• 1200

225 watts per channel into 8 ohms from 20 Hz to 20 kHz , with no more than $0.025 \%$ THD
400 watts per channel into 4 ohms from 20 Hz to 20 kHz , with no more than $0.050 \%$ THD
600 watts per channel into 2 ohms from 20 Hz to 20 kHz , with no more than $0.095 \%$ THD

## Bridged mono operation:

800 watts into 8 ohms from 20 Hz to 20 kHz , with no more than $0.050 \%$ THD
1200 watts into 4 ohms from 20 Hz to 20 kHz , with no more than $0.095 \%$ THD

Maximum Power at 1\% THD:
$250 \quad$ watts perchannel into 8 ohms
425 watts perchannel into 4 ohms
640 watts per channel into 2 ohms
850 watts into 8 ohms bridged
1280 watts into 4 ohms bridged

## M• 1400 / M•1400i

250 watts per channel into 8 ohms from 20 Hz to 20 kHz , with no more than $0.012 \%$ THD

425 watts per c hannel into 4 ohms from 20 Hz to 20 kHz , with no more than $0.025 \%$ THD

630 watts per channel into 2 ohms from 20 Hz to 20 kHz , with no more than $0.050 \%$ THD

## Bridged mono operation:

850 watts into 8 ohms from 20 Hz to 20 kHz , with no more than $0.025 \%$ THD

1260 watts into 4 ohms from 20 Hz to 20 kHz , with no more than $0.050 \%$ THD

## Maximum Power at 1\% THD:

watts per channel into 8 ohms watts per channel into 40 hms watts per channel into 2 ohms watts into 8 ohms bridged watts into 4 ohms bridged

Note: Power ratings are specified at 120VAC (U.S. and Canada) and 240VAC (Export) line voltages.
The $\mathrm{M} \cdot 1200 / \mathrm{M} \cdot 1400$ power a mplifiers draw large a mounts of current from the AC line with continuoussine wave testing. Accurate mea surement of power requires a steady and stable AC supply. This means the line impedance must be very low to insure that the peakAC line voltage does not sag to less than $97 \%$ of its value.
If driving highly reactive loads, we recommend that the limiter circ uit be engaged.

## POWER BANDWIDTH:

20 Hz to $70 \mathrm{kHz}(+0,-3 \mathrm{~dB})$

## FREQUENCY RESPO NSE:

20 Hz to $40 \mathrm{kHz}(+0,-1 \mathrm{~dB})$
10 Hz to $70 \mathrm{kHz}(+0,-3 \mathrm{~dB})$
DISTORTIO N:
THD, SMPTE IMD, TIM

$$
\begin{aligned}
& <0.025 \% @ 8 \Omega \\
& <0.050 \% @ 4 \Omega \\
& <0.150 \% @ 2 \Omega
\end{aligned}
$$

## SIGNAL-TO-NOISE RATIO:

$>107$ dB below rated power into 4 ohms
CHANNEL SEPARATION:
$>80 \mathrm{~dB}$ @ 1 kHz
DAMPING FACTOR:
350 minimum
INPUTIMPEDANCE:
20k balanced bridging
INPUTSENSITVITY:
1.23 volts ( +4 dBu ) for rated power into 4 ohms

GAIN:
$30.25 \mathrm{~dB}(32.5 \mathrm{~V} / \mathrm{V})$
MAXIMUM INPUTLEVEL:
9.75 volts (+22 dBu)

RISE TIME:
$<4.4 \mu \mathrm{~s}$
SLEW RATE:

| Voltage Slew Rate | $>50 \mathrm{~V} / \mu \mathrm{s}$ |
| :--- | :--- |
|  | $>100 \mathrm{~V} / \mu \mathrm{s}$ bridged |
| Current Slew Rate | $>32 \mathrm{~A} / \mu \mathrm{s}$ at $2 \Omega$ |

CMRR:
$>40 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz

## LOAD ANGLE:

8( $\mathrm{j} x)$ time independent at $8 \Omega$
$4( \pm x)$ time dependent, $T>6 \mathrm{~min}$. at $4 \Omega$
2 (1 $+\mathrm{j} x$ ) time dependent, $\mathrm{T}>2 \mathrm{~min}$. at $2 \Omega$

## TRANSIENTREC OVERY:

$<1 \mu$ for 20 dB overdrive @ 1kHz
HIG H FREQ UENCY OVERLOAD AND LATC HING:

No latch up at any frequency or level.

## HIG H FREQ UENCY STABILTY:

Unc onditiona lly stable driving a ny reactive or capacitive load.

## TURN ON DELAY:

## 3 sec onds

## VARIABLE LOW-CUTFILTER:

10 Hz (Off) to 170 Hz , 2nd Order Bessel

## SUBWO OFER LOW-PASS FILTER:

Switc hed: 63Hz/ 125Hz, 3rd Order Bessel

## CONSTANTDIREC TIVITY HIG H FREQUENCY BOOST:

## 2 kHz to 6 kHz ( +3 dB points)

$6 \mathrm{~dB} /$ oc ta ve high-frequenc $y$ shelving filter, (shelving occurs at a p proximately 30 kHz )

LMITER SECTION:
Complementary Positive and Negative Peak Detecting

## INDICATORS:

6 meter LEDs per channel
SIG (Signal Present), $-20,-9,-6,-3$, OL
(Overload)
CH1\&2
PROTECTLEDs
SHORTLEDs
TEMP STATUS
COD/HOTLEDs

## POWER CONSUMPTION:

65 watts at idle
900 watts with musical program fully loaded (2 ohms per side, or 4 ohms bridged)
550 watts with musical program fully loaded (4 ohms per side, or 8 ohms bridged)
850 watts at full power into 8 ohms (continuoussine wave)
1500 watts at full power into 4 ohms (continuous sine wave)
2500 watts at full power into 2 ohms (continuoussine wave)

AC UNE POWER:
US 120VAC, 60Hz

Europe 240VAC,50/60Hz
Japan 100VAC,50/60Hz
Korea 220VAC,60Hz

## AC DROP-OUTVOLTAGE:

At approximately $50 \%$ of rated line voltage

## PHYSICAL:

| Height | 3.5 inches | $(89 \mathrm{~mm})$ |
| :--- | ---: | ---: |
| Width | 19.0 inches | $(483 \mathrm{~mm})$ |
| Depth | 15.25 inches | $(387 \mathrm{~mm})$ |
| Overall Depth | 16.25 inches | $(413 \mathrm{~mm})$ |
| Handle Depth | 1.25 inches | $(32 \mathrm{~mm})$ |
| Weight | 36 pounds | $(16.3 \mathrm{~kg})$ |

Since we are always striving to make our stuff better at Mackie Designs by incorporating new and improved materials, components, and manufacturing methods, we reserve the right to change these specific ations at any time without notice.

## CIRCUITTHEORY

Much of the circuitry in the $M \cdot 1200 / M \cdot 1400$ is self explanatory from the schematic. This section will expla in the unique circ uits and architecture. Samples in this section will refer to Channel 1 (Left) for circ uitry that is identic al on both channels.

## INPUTCIRCUITRY

Refer to schematic on page 23.
The signal path begins with the INPUTBOARD. Following Channel 1's input, signal is fed to a unity gain differential op-amp, U1A. The signal is next sent to U1B which senves as both HPF and CD hom EQ. If not in SUBWOOFER mode, the summing amp (U2B) and LPF's (U3A, U3B) are bypassed. The signal is sent via J 11 to the gain control on the DISPLAY BOARD. After the gain control, the signal is buffered by U7A, retumed to the INPUTBOARD and routed to the MAIN BOARD via J 16.
Channel 2 's input signal path is electric ally identic al to Channel 1's in STEREO mode. In PARALLEL MONO mode Channel 2's input signal is ignored and Channel l's input is sent to Channel 2's gain control via SW5A. For BRIDGE MONO operation, Channel 1's input signal is inverted by U2A and routed to the MAIN BOARD via SW5C.

## POWER AMPUFIER CIRCUITRY

Refer to schematic on page 27.
The $\mathrm{M} \cdot 1200 / \mathrm{M} \cdot 1400$ use a class AB triple darlington output with complementary output devices. The main power supply is $+/-80 \mathrm{~V}$, there is also a $+/-90 \mathrm{~V}$ supply for the front end circ uitry. Channels are muted for 4 seconds on power up as C53 charges via R203. Muting is a chieved by tuming off Q73, removing current sources for the differential pairs. (Wait a minute! PAIRS? Read on...)

An immediately obvious departure from standard designs is the Dual Differentials and Symmetrical Voltage Amps. The reasoning behind this front end architecture is actually quite simple. Transistors transfer characteristic s are not entirely linear, so even the best conventional front end design will introduce some distortion. Most amplifiers use negative feedback to reduce thisproblem (creating a few more in the process). Mackie FR Series amplifiers take a different approach. By using two complementary "mirror image" front end circ uits any distortion caused by non-linear transistor c urves is effectively canceled out in the biasstring, without feedback!

Another design feature unique to Mackie FR Series Amplifiers is the Baker Clamp. The Baker Clamp has two functions; 1) Prevent output/drivertransistors saturating, 2) Drive the LIMITER LDR. Refeming to the left main amp schematic, Q27 is a common base a mplifier, it will tum on if Q31's collector nises more than two diode drops above the +80 V supply, preventing it from rising further. There are three diode drops between Q31's collector and the base of driver transistor Q28 (D3, D2, Q29V be). Q29 will never see a voltage greater than one diode drop below the +80 V supply, even if the +80 V supply fluc tuates. Q27 also drives the limiter DRR LED U2A. The negative side has the same circ uit mirrored.

## PROTECTION CIRCUITS

Refer to schematics on pages 27-29.
The $M \cdot 1200 / M \cdot 1400$ has two output protection circ uits in addition to the rail fuses. The first mutes the amp if the output devices are loaded beyond their safe operating area (SOA). The second is a crowbarcircuit that ensures the rail fuses blow if there is DC on the output.

## SOA PROTECTION

The SOA protection circuit senses the volta ge drop across the emitter resistors much like standard VI current limiting transistors. Q76 and Q77 will tum on if the emitter drop exceeds ~1V. If they are on for long enough to charge C38 (through R159), the SOA protection circ uit is activated by transistor switc hes Q79 and Q78.

If SOA detection is tripped, the channel is muted by discharging C53 through R200 and D65, fan speed is increased, and the "SHORT" LED lights.

## DC CROWBARS

The DC Crowbar circ uit protects speakers in the event of an output failure by blowing all rail fuses. SCRs Q21-24 are used to short the $H-80 \mathrm{~V}$ supply supplies to ground. Output signal from both sides is fed through 100K resistors R90, R89 to C21, essentially forming a LPF. DC on either output will trigger comparator U4A (positive) or U4B (negative). The SCRs are then fired via driver transistors Q87, Q88.

## NOTE:

The LM339 comparator IC is used extensively in the $\mathrm{M} \cdot 1200 / \mathrm{M} \cdot 1400$. It differs from a standard op-amp used asa comparator in that it has an open collector output. If the voltage at the inverting input exc eeds the non-inverting, the LM339's output switches to it's negative supply. Otherwise, the output is open.

## THERMALMANAGEMENT

Refer to schematic on page 29.
The $M \cdot 1200 / M \cdot 1400$ T-Design Heatsink/Fan cools output devic es evenly and does not collect dust on the circuitry. The fan operates at two speeds, controlled by the amplifier. An LM35DZmounted in the center of the heatsink providestemperature information to the fan control and overtemp circ uits. There is also a thermal breaker in the power transformer.

## FAN CONTROLCIRCUIT

The fan voltage comesfrom a feedback regulator circ uit formed by Q91 and Q92. The output voltage is programmed by the ratio of R209 to R211// R207 (//=parallel). When the unit is powered up C 83 charges through R241 providing a 40 second delay before the fan starts. As C 83 charges, U6D's output switchesto -16 V , starting the fan. Then U6A's output switc hes to open, allowing U6B to inc rease the fan speed, if triggered. R240 and C 82 give the fan extra voltage when starting.

The fan speed is inc reased by U6B adding R211 in parallel with R207. (Q91 wants it's base a diode drop above ground, so Q92 doubles its Emitter voltage). U6B is triggered by U4D to increase fan speed if;

- Channel 1 SOA protection is activated (U5C), OR
- Channel 2 SOA protection is activated (U5D), OR
- The heatsink is above 60 deg C (U5B) AND program is detected (U4C), OR
- The heatsink temperature is above 80 deg C (U5A).

U6C and Q89 are used to reset the circuit on powerdown. Under normal operation C50 is charged via D57, Holding Q89 off. When power is removed C50 disc harges and Q89 switc hes on as the rails collapse. When the voltage on Q89's collector fallsbelow ground U6 switchesto the negative rail discharging C82 and C 83 .

## THERMAL SHUTDOWN

Extreme heatsink or transformer core temperature will activate OVERTEMP. U5A activates overtemp if the LM35DZdetects heatsink temperature above 80 deg C. Feedback resistor R137 resc alesU5A's voltage reference so that the heatsink must cool to below 50 deg C before overtemp is deactivated. Overtemp can also be activated by the power transformer themal breaker (via Q89). In either case, both channel are muted via D69 and D66.

## SERVICE PROCEDURES

## MECHANICALPROCEDURES

The $M \cdot 1200 / M \cdot 1400$ design allows easy removal of all components a nd assemblies. Disassembly and reassembly should be self evident. This manual has exploded diagrams in the parts section.
Several important points conceming the assembly:

- 4 of the screws that secure the top cover also hold the front extrusion (curved piece) in place. When removing the top cover, be careful that the front extrusion is not dropped.
- If the MAIN PCB is removed, be sure the smaller head machine screws (750-050-04) are replaced next to the filtercaps. The largerhead machine screwscan arc to the capacitor body.
- Be sure all tywraps are replaced and that no wires are in danger of being pinched in-between the cover and heatsink.


## REQUIRED EQUIPMENTLIST

- 30 MHz dual trace oscilloscope
- DMM (Must be capable of measuring $8 m V$ DC with a minimum of 2 digits of accuracy, and down to .1 $)$
- Sine wave oscillator/ Function generator ( $20 \mathrm{~Hz}-20 \mathrm{KHz}$ )
- 4 load resistors ( $8 \Omega$ with a minimum 500 W power rating)
- 10A / 120V Variac With AC voltmeter and a defeatable ammeter (1 Amp full range) or wattmeter (300 Watts full range)
- 0.1uF 400 V film capacitor installed across dual banana plug
- 16 AWG shorting jumper installed across dual banana plug


## RECOMMENDED EQUIPMENTLIST(PERFORMANCE VERIFICATION)

- Distortion a nalyzer a nd low distortion oscillator.
(Capable of resolving distortion as low as $0.002 \%$ from 20 Hz to 20 KHz )
- 2500W AC powersource.


## TROUBLESHO OTING TIPS-OUTPUTFAILURES

After a catastrophic failure, it is likely that the four $+/-80 \mathrm{~V}$ supply fuses will be blown. Replace fuses and very slowly bring up the Variac while monitoring line consumption. It is likely that substantial line current will be pulled due to shorted output parts. At the same time, look for DC offset at the output. Offset of greater than $+1-2.8 \mathrm{~V}$ will trigger the protection circ uits and re-blow the four fuses. Keep the output offset below $+1-2 \mathrm{~V}$, or temporarily defeat the DC-offset detector (Lift one side of D56).

Remove the main board from the unit and check for shorted output transistors. If one bad output is found, replace all eight in the channel. When an output device shorts it can place high curent stresses on the other output parts. These output parts can fail over time. Since long term reliability is paramount, please replace all the outputs.

All eight of the $3 \mathrm{~W} 0.22 \Omega$ emitter resistors must be verified for proper value. Any offtolerance, oropen parts, need to be replaced. An off tolerance (higher resistance) emitter resistor will prevent it's related output transistor from "doing it's share" and will place more stress on it's mates in the output section. Also venify the 8 base drive resistors ( $2.2 \Omega, 1 / 4 \mathrm{~W}$, fusible) are all OK. Verify that the drivers and pre-drivers are not shorted. If one driver is shorted replace it's mate. Do the same with the pre-drivers. Also check all the resistors surrounding the drivers and pre-drivers.

Check the VI limiters and detectors. It is not uncommon to damage these parts when the amplifier fails in a spectacular way! Look for shorts on Q76, Q77, Q94, Q95, Q83, Q84, Q96, and Q97. Verify proper value on the resistors that go to the bases of these devices. It is critic al that these sections are working correctly. Shorted transistors can cause some odd asymmetric al clipping problems. Open parts will not allow the current limiting to operate effectively. If problems exist in these sections the amplifier might fail into a short, or might clip prematurely when loaded to $2 \Omega$.
All of the above trouble shooting (Not including part replacement) takes perhaps 15 to 30 minutes to do. If you take the time, and do all that is indicated above, it will allow $99 \%$ of the amplifiers to come up the first time! Trying to humy, and skipping what is suggested, can lead to a frustrating and time consuming repair.
Slowly bring up the supply and verify that line consumption isn't excessive and that the output is centered (no DC offset). It might be desirable to defeat the amplifier muting (Connect U5-12, 13, \& 14 together) temporarily so the a mplifiers are active even when the supplies are still very low. If the amp stays centered, verify that it will pass a nice clean sine wave. Remove any test jumpers (I.E. DC-fault defeat \& muting defeat) and proceed to the "Reliability Verific ation" section.

## BIAS AND TESTPROCEDURE

After the unit has been repaired, the following should be done to assure long term relia ble operation. If a distortion analyzer is present, distortion specific ations should be venified.

1. Adjusts bias in both channels (R1 \& R51) for $8 m V+-0.3 m V$ at bias test points (J 53 \& $J 54$ ) after unit has idled for a few minutes. With Full AC line voltage applied to unit, it will pull a round 65 W from the line ( 900 mA at 120 V ). Measure for DC offset on both output connectors. DC offset should be less than $+1-50 \mathrm{mV}$.
2. Apply a 1 KHz sine wave to the inputs and venify that the unloaded outputs have a waveform that is symmetrical and undistorted. Drive the outputs into clipping and verify symmetrical "flat-topping" on the waveform.
3. Reduce output levels, install the 0.1uF capacitor jumper from the output to ground connections, and verify that clipping behavior is proper. Verify that no high frequency oscillation occurs near and at clipping (parasitic oscillation).
4. Remove capacitive loading and minimize sine output. Verify and re-adjust bias if required. Note that the bias will not drift appreciably in a unit that is functioning properly.
5. Connect the amplifier directly to the AC line and connect an $8 \Omega$ dummy load to both channels. Bring sine wave level up on both channels and verify symmetrical clipping. The output will clip somewhere between $120 \mathrm{~V}-140 \mathrm{~V} \mathrm{pk} / \mathrm{pk}$ depending on how stiff the line is. Clipping should be asdescribed above. Add the 0.1uF capacitive loading and verify clipping is still well behaved.
6. Individually load Channel 1 and Channel 2 with $2 \Omega$. Clipping should be symmetric al, well behaved, and occur somewhere around 80V-100V pk/pk. Verify that clipping is well behaved after adding the 0.1uF capacitive loading.
7. Reduce output level to 20 V pk/pk and short first channel one and then channel two. The front panel "short" and "protect" LEDs should flash on the respective channels.
8. Place amplifier in bridge mode and connect $4 \Omega$ loading to bridge outputs (across both " + " output binding posts). Slip some card stock between the heatsink-outlets and chassis sides. Monitor one of the outputs and adjust for a 20 V pk/pk signal. Short a cross both outputs and verify that all four 'Short" and "Protect" LEDs light and the amplifier mutes.
9. Remove short, monitor one of the outputs, and adjust for a $60 \mathrm{Vk} / \mathrm{pk}$ sine output (450W of output power bridged). After a few minutes the fan will begin running fast (heatsink at $60^{\circ} \mathrm{C}$ ) and a short time later the a mplifier will mute (heatsink at $80^{\circ} \mathrm{C}$ ). The "Hot" and "protect" LEDs will come on. Remove card stock and after a few minutes the a mplifier will come out of mute mode and the "cold" LED will retum.
10. Disconnect loading and remove drive. Reconnect amplifier to Variac and confirm that the idle consumption is roughly 65 W or 900 mA , as before. Connect the a mplifier to speakers and verify that it sounds OK with music.

## PARTS

## QUICK PARTS

## FRONTPANEL



REAR PANEL


## CHASSISASSEMBLY



CHASSIS ASSEMBLY PARTS LIST

| ITEM \# | PART \# | DESC RIPTION | NOTES |
| :---: | :---: | :---: | :---: |
| 1 | 700-028-02 | SEMS 6-32X3/8 PHP BLKZC | AШ SIDE PANEL SCREWS |
| 2 | 550-221-00 | TOP COVER - M1200 |  |
| 3 | 700-041-04 | MCH 6-32X3/8 FL 100DG BLK | TOP COVER TO CHASSIS |
| 4 | 551-029-00 | EXTR SCRN DSPLY BZ-M1200 |  |
| 4 | 551-029-10 | EXTR SCRN DSPLY BZ-M1400 |  |
| 5 | 700-041-04 | MCH 6-32X3/8 FL 100DG BLK | MANIFOL TO FAN |
| 6 | 550-277-00 | SCREEN MANIFOL - M1400 |  |
| 7 | 550-223-20 | SIDE RAIL LEFT- M1200 |  |
| 8 | 550-223-10 | SIDE RAIL RIG HT- M1200 |  |
| 9 | 550-222-00 | BTM COVER - M1200 |  |
| 9 | 550-244-00 | BOTTOM COVER - M1400 |  |
| 10 | 080-023-20 | PNTHANDLE ASSY LEFT |  |
| 11 | 080-023-10 | PNTHANDLE ASSY RIGHT |  |
|  | 700-028-04 | SEMS 6-32X3/4 PHP BLKZC | HANDLE ASSY TO CHASSIS |
|  | 700-041-04 | MCH 6-32X3/8 FL 100DG BLK | HEATSINK TO CHASSIS BOTTTOM |
| 12 | TRANSFORMER / MOUNTING |  |  |
|  | 600-016-00 | XFMR M1200 120V |  |
|  | 600-016-01 | XFMR M 1200230 V |  |
|  | 600-016-02 | XFMR M 1200100 V |  |
|  | 705-019-00 | NUTHEX 5/16-18 |  |
|  | 710-017-00 | WASH SPLTLCK 5/16 HEAVY |  |
|  | 710-024-00 | WASH FLAT5/16 HARD (USS) |  |
|  | 550-249-00 | PLATE XFMR MTG - M1200 |  |
|  | 780-111-00 | RUBBER PAD |  |
|  | 700-059-00 | HEX 5/16-18X3IN GD-5 |  |
| 13 | 550-247-00 | SHIELD INPUT- M1200 |  |
| 14 | 780-042-00 | INSUL MYLAR INPUTSHIELD |  |
| 15 | 055-079-00 | PCB ASSY INPUT 1200/1400 |  |
| 16 | 700-028-02 | SEMS 6-32X3/8 PHP BLKZC | INPUTPCB TO SHIELD |
| 17 | 760-048-04 | KNOB 9MM DARK GRAY |  |
| 18 | 550-275-00 | SPACER PLATE-AMPUFIER |  |
|  | 710-002-00 | WASHER FOR $1 / 4^{\prime \prime}$ J ACKS |  |
|  | 705-003-00 | NUTFOR 1/4" J ACKS |  |
|  | 700-055-00 | MCH 4-24X3/8 PHP BLK HILO | XLRJACK SCREWS |
|  | 055-080-00 | PCB ASSY DISPLY 1200/1400 |  |
|  | 055-081-00 | PCBASSY MAIN - 1200 |  |
|  | 080-072-01 | PCB ASSY MAIN - M1400 |  |
|  | 080-072-02 | PCB ASSY MAIN - M1400i |  |
|  | 700-028-02 | SEMS 6-32X3/8 PHP BLKZC | MAIN PCBTO CHASSIS EXCEPTFOR: |
|  | 700-050-04 | MCH 6-32X3/8 FIL PHLCLR | ! USE THESE NEXTTO CAPS! |
|  | 700-011-00 | MCH 4-40X1/4 BTNSKTBLKOX | OUPTUTTERMINALSTO CHASSIS |
|  | 710-019-00 | WASH FIBRE BLK (W/J ACK) |  |
|  | 705-015-00 | NUTSLOTNCKL |  |
|  | 700-055-00 | MCH 4-24X3/8 PHP BLK HILO |  |

## HEATSINK ASSEMBLY



HEATSINK ASSEMBLY PARTS LIST

| ITEM \# | PART\# | DESC RIPTIO N |
| :---: | :--- | :--- |
| 1 | $551-032-00$ | EXTR FAB HEATSINK - M1200 |
| 2 | $410-003-00$ | INSL SILPAD K6 W/ADHESIVE |
| 3 | $055-081-00$ | PCB ASSY MAIN - 1200 |
| 3 | $080-072-01$ | PCB ASSY MAIN - M1400 |
| 3 | $080-072-02$ | PCB ASSY MAIN - M1400i |
| 4 | $550-255-00$ | PIG GYBAC K C UP |
| 5 | $700-058-02$ | MCH 4-40XI/2 SKTCLRZC |
| 6 | $710-020-00$ | WASH NO.4 C OMPRESSION |
| 7 | $710-022-00$ | WASH FLATNO.4 FENDER |
| 8 | $550-224-00$ | BRACKETSUBSINK - M1200 |
| 9 | $410-003-00$ | INSL SILPAD K6 W/ADHESIVE |
| 11 | $700-010-00$ | TF 6-32X1/4 PHP BLKZC |
| 12 | $710-013-00$ | WASH FLATNO.6 FIBRE |
| 13 | $700-010-04$ | TF 6-32X3/8 PHP BLKZC |
| 14 | $550-237-00$ | SPRING CLP SUBSINK-M1200 |
| 15 | $700-028-02$ | SEMS 6-32X3/8 PHP BLKZC |
| 16 | $550-225-00$ | HEATSINK COWUNG - M1200 |
| 17 | $700-010-00$ | TF 6-32X1/4 PHP BLKZC |
| 18 | $770-006-00$ | FAN 80MM 24VDC-MECHATRONI |
| 18 | $770-007-00$ | FAN 80MM 24VDC-PANASO NIC |
| 19 | $550-219-00$ | BRKTFAN PS - SR40.8 |
| 20 | $700-047-04$ | MCH 10-32X3/8 FIL PHLCLR |
| 21 | $700-028-02$ | SEMS 6-32X3/8 PHP BLKZC |
| 22 | $400-083-00$ | 2P .100X1 22GA END |
| 24 | $700-058-02$ | MCH 4-40X1/2 SKTCLRZC |
| 25 | $710-020-00$ | WASH NO.4 COMPRESSION |
|  |  |  |

## COMPLEIE PARTS UST

040- Cables
055- Finished PCB Assys
100- Pots and Resistors
200- Capacitors
300-Semic onductors
400-J acks/Connectors

500- Switches
510- Fuses
550-Chassis Metal
600- Transformers
601- Inductors 610- Wires and Cables

640- AC Line Cords 700- Hardware 760- Knobs/Plastic 790- Misc./Packing 800- Printed Material

| PART\# | DESC RIPTIO N | PART \# | DESC RIPTIO N |
| :---: | :---: | :---: | :---: |
| 040-033-02 | RIB 28GA TRANS 20C 18IN | 100-094-00 | RES CF.125W 5\% 75K OHM |
| 040-033-03 | RIB 28GA TRANS 20C 4IN | 100-097-00 | RESCF.125W 5\% 100K OHM |
| 040-117-02 | RIB 28G TRNS 10C . 1011.5 | 100-109-00 | RES CF.125W 5\%1M OHM |
| 055-079-00 | PCB ASSY INPUT 1200/1400 | 100-110-00 | RES CF.125W 5\% 360K OHM |
| 055-080-00 | PCB ASSY DISPLY 1200/1400 | 100-111-00 | RES CF.125W 5\% 390K OHM |
| 055-081-00 | PCB ASSY MAIN - 1200 | 105-277-00 | RES MF.125W 1\% 750 OHM |
| 080-072-01 | PCB ASSY MAIN - M1400 | 105-331-00 | RES MF.125W 1\% 2 K 49 OHM |
| 080-072-02 | PCB ASSY MAIN - M1400i | 110-036-00 | RESCF.25W 5\% 300 OHM |
| 080-034-00 | PCB ASSY SOFTSTART-120V | 110-046-00 | RESCF.25W 5\% 750 OHM |
| 080-034-01 | PCB ASSY SOFTSTART- 240V | 115-427-00 | RES MF.25W 1\% 24 K 9 OHM |
| 080-023-10 | PNTHANDLEASSY RIGHT | 121-097-00 | RES MO 1W 5\% 10K OHM |
| 080-023-20 | PNTHANDEEASSY LEFT | 123-009-00 | RESMO 3W 5\%. 22 OHM |
| 080-035-00 | PWR SW HARNESS - AMP | 123-033-00 | RESMO 3W 5\% 2.2 OHM |
| 100-001-00 | RESCF.125W 5\% 10 OHM | 123-056-00 | RESMO 3W 5\% 20 OHM |
| 100-017-00 | RESCF.125W 5\% 47 OHM | 123-071-00 | RES MO 3W 5\% 82 OHM |
| 100-023-00 | RESCF.125W 5\% 82 OHM | 123-085-00 | RES MO 3W 5\% 330 OHM |
| 100-027-00 | RES CF.125W $5 \% 120$ OHM | 123-109-00 | RESMO 3W 5\% 3.3K OHM |
| 100-030-00 | RES CF.125W 5\% 160 OHM | 123-124-00 | RES MO 3W 5\% 13K OHM |
| 100-031-00 | RES CF.125W 5\% 180 OHM | 125-020-00 | RES WW 15W 5\% 82 OHM CMNT |
| 100-035-00 | RES CF.125W 5\% 300 OHM | 130-017-02 | POTRTY 50KC 12MM DUAL TN |
| 100-040-00 | RES CF.125W 5\% 430 OHM | 130-036-00 | POTRTY 5KA 16MM DLDTNT |
| 100-042-00 | RES CF.125W 5\% 510 OHM | 130-037-02 | POTRTY 10KC 9MM TN |
| 100-045-00 | RES CF.125W 5\% 680 OHM | 130-038-00 | POTTRIM 500B HORIZ |
| 100-049-00 | RESCF.125W 5\% 1K OHM | 140-025-00 | RES TF SM . $1 \mathrm{~W} 5 \% 10$ OHM |
| 100-050-00 | RES CF.125W 5\% 1K1 OHM | 140-057-00 | RES TF SM .1W 5\% 220 OHM |
| 100-056-00 | RESCF.125W 5\% 2K OHM | 140-060-00 | RES TF SM .1W 5\% 300 OHM |
| 100-061-00 | RES CF.125W 5\% 3K3 OHM | 140-065-00 | RES TF SM .1W 5\% 470 OHM |
| 100-068-00 | RES CF.125W 5\% 6K2 OHM | 140-068-00 | RES TF SM .1W 5\% 620 OHM |
| 100-071-00 | RES CF.125W 5\% 8K2 OHM | 140-073-00 | RES TF SM .1W 5\% 1K0 OHM |
| 100-072-00 | RES CF.125W 5\% 9K1 OHM | 140-076-00 | RES TF SM .1W 5\% 1K3 OHM |
| 100-073-00 | RES CF.125W 5\% 10K OHM | 140-078-00 | RES TF SM .1W 5\% 1K6 OHM |
| 100-075-00 | RESCF.125W 5\% 12K OHM | 140-080-00 | RES TF SM .1W 5\% 2K0 OHM |
| 100-076-00 | RES CF.125W 5\% 13K OHM | 140-081-00 | RES TF SM .1W 5\% 2K2 OHM |
| 100-080-00 | RES CF.125W 5\% 20K OHM | 140-083-00 | RES TF SM .1W 5\% 2K7 OHM |
| 100-082-00 | RES CF.125W $5 \% 24 \mathrm{~K}$ OHM | 140-087-00 | RES TF SM .1W 5\% 3K9 OHM |
| 100-083-00 | RES CF.125W 5\% 27K OHM | 140-089-00 | RES TF SM .1W 5\% 4K7 OHM |
| 100-084-00 | RES CF.125W 5\% 30K OHM | 140-092-00 | RES TF SM .1W 5\% 6K2 OHM |
| 100-086-00 | RES CF.125W 5\% 36K OHM | 140-094-00 | RES TF SM .1W 5\% 7K5 OHM |
| 100-089-00 | RES CF.125W 5\% 47K OHM | 140-097-00 | RES TF SM .1W 5\% 10K OHM |
| 100-092-00 | RES CF.125W 5\% 62K OHM | 140-106-00 | RES TF SM .1W 5\% 24 K OHM |
| 100-093-00 | RES CF.125W $5 \% 68 \mathrm{~K}$ OHM | 140-108-00 | RES TF SM .1W 5\% 27K OHM |


| PART \# | DESC RIPTIO N | PART\# | DESC RIPTIO N |
| :---: | :---: | :---: | :---: |
| 140-111-00 | RESTF SM .1W 5\% 36K OHM | 300-003-00 | DIO SW DL4148 100 S SM |
| 140-115-00 | RESTF SM . $1 \mathrm{~W} 5 \% 51 \mathrm{~K}$ OHM | 300-007-00 | DIO SW 15S244-SUB 155245 |
| 140-123-00 | RES TF SM .1W 5\% 100K OHM | 301-006-00 | THY 2N6507 400V |
| 140-124-00 |  | 301-007-00 | DIO PWR DUAL FEP30 (D7) |
| 140-139-00 | RESTFSM .1W 5\% 470K OHM | 301-008-00 | DIO PWR DUAL FEN30 (D8) |
| 140-147-00 | RESTFSM.1W 5\% 1 M OHM | 301-009-00 | DIO PWR 1N4004 |
| 145-318-00 | RESMFSM.1W 1\% 2 K00 OHM | 301-010-00 | DIO PWR 1N5404 3A 400V |
| 145-389-00 | RESMFSM .1W 1\% 10 KO OHM | 301-014-00 | DIO PWR 1N4007 |
| 145-397-00 | RESMF SM .1W 1\% 12 Kl OHM | 302-001-00 | DIO $\mathbb{E N N} 1 \times 52618$ 47V 500MW |
| 145-406-00 | RES MF SM . $1 \mathrm{~W} 1 \% 15 \mathrm{KO}$ O HM | 302-003-00 | DIO $\mathbb{E N N} 1 \mathrm{~N} 4745 \mathrm{~A} 16 \mathrm{~V}$ 1W |
| 145-469-00 | RESMF SM .1W 1\% 68K1 OHM | 304-001-00 | LED RED T-1 |
| 145-478-00 | RESMF SM .1W 1\% 84 K 5 О HM | 304-004-00 | LED GREEN T-1 |
| 145-485-00 | RES MF SM .1W 1\% 100 K OHM | 310-002-00 | XSTR PNP 2 N4403 |
| 145-547-00 | RES MF SM .1W 1\% 442 K OHM | 310-007-00 | XSTR NPN 2 N4401 |
| 150-009-00 | RES FUS. 25 W 5\% 2.2 OHM | 310-023-02 | XSTR NPN 2SC 2362K TR |
| 150-037-00 | RES FUS. 25 W 5\% 33 OHM | 310-028-00 | XSTR PNP 2SB940A POWER |
| 150-045-00 | RES FUS 2.25 W 5\% 68 OHM | 310-029-00 | XSTR NPN 2SD1264A POWER |
| 200-001-02 | PLY .012UF 10\% 100V TR | 310-032-02 | XSTR PNP 2SA1016K TR |
| 200-004-02 | PLY .047UF 10\% 100 V R | 310-033-00 | XSTR PNP MJ L21193 |
| 200-007-02 | PLY . 014 U 10\% 100 V TR | 310-034-00 | XSTR NPN MJ L21194 |
| 200-015-02 | PLY . 0047 UF 10\% 100 V PEI | 310-035-00 | XSTR PNP 2 SA1478 |
| 200-022-02 | PLY .47UF 5\% 50V TR | 310-036-00 | XSTR NPN 2SC 3788 |
| 200-023-00 | PLY/BX .001UF 20\% 250 V Y2 | 310-037-00 | XSTR NPN MJE340 POWER |
| 200-024-00 | PLY/BX .01UF 20\% 250 V Y2 | 310-038-00 | XSTR PNP MJ E350 |
| 200-025-02 | PLY/BX.56UF 5\% 63V TR | 310-042-00 | XSTR NPN MJ E15032 |
| 200-036-00 | PLY/BX .1UF 10\% 250 V | 310-043-00 | XSTR PNP MJ E15033 |
| 205-002-02 | MICA 270 PF 5\% 500V $\mathbb{T}$ | 311-002-00 | XSTR PNP MMST4403 SM |
| 210-001-02 | CER .01UF $+80 /-20 \% 50 \mathrm{~V}$ TR | 320-004-00 | OPAMP 4560F |
| 210-010-02 | CER 47PF 5\% 500V NPO TR | 323-001-00 | LM339 QUAD COMP |
| 210-017-02 | CER 470PF 5\% 500V Y5E TR | 323-002-00 | LM339D QUAD COMP SM |
| 211-003-00 | CER . 001 UF $10 \% 50 \mathrm{~V}$ AX | 329-012-00 | VTLSC 10 OPTOCOUPLER |
| 211-009-00 | CER.1UF 20\% 50 V AX | 329-014-00 | LM 35 DZPREC TEMP SENSOR |
| 212-001-00 | CER .01UF 10\% 50 V X7R SM | 400-059-00 | TERM QDISC . 250 MALE PCMT |
| 212-004-00 | CER 220PF 5\% 50V NPO SM | 400-060-00 | FUSE CUP PCMT5MM DIA |
| 212-009-00 | CER 47PF 5\% 50V NPO SM | 400-061-00 | HDR 2P.100x1 STR LOCK |
| 212-010-00 | CER. $1+80 /-2025 \mathrm{~V}$ ZUU SM | 400-065-00 | TERM QDISC . 250 F 18-22GA |
| 220-001-02 | LYT 22 UF $20 \% 25 \mathrm{~V}$ RAD TR | 400-077-00 | HDR 20P .1X2 STR LCK SHRD |
| 220-002-02 | LYT 47UF 20\% 25 V RAD TR | 400-078-00 | HDR 10P.1X2 STR LCK SHRD |
| 220-004-02 | LYT 470UF 20\% 6.3V RAD TR | 400-083-00 | 2P.100X1 22GA END |
| 220-007-00 | LYT 100UF 20\% 100 V RAD | 400-118-00 | JACK 1/4 HORIZPCMNTMONO |
| 220-011-02 | LYT 100UF 20\% 25 V RAD | 400-119-00 | TERM BANANA QUAD HRZPCMT |
| 220-014-00 | LYT2.2UF 20\% 50V RAD | 400-129-00 | FUSE CUP . 25 DIA PC MNT |
| 220-025-00 | LYT 1000UF 20\% 35V RAD | 400-133-00 | HDR 6CK 11A/600V |
| 220-027-02 | LYT 10UF 20\% 50 V RAD TR | 400-134-00 | RECP 6CK 11A/600V |
| 220-033-00 | LYT 10000UF 20\% 80V RAD | 400-135-00 | TERM 11A/600V F 18-20GA |
| 220-034-00 | LYT. 47 UF $20 \% 100 \mathrm{~V}$ RAD | 400-138-00 | SPEAKONSHORIZ4CKT |
| 220-035-00 | LYT 12000UF 20\% 80V RAD | 400-141-00 | XLR $3 P$ F VERTA-SERIES |
| 220-039-00 | LYT 10002025 V RAD SMDIA | 400-142-00 | XLR 3P M VERTA-SERIES |
| 220-040-00 | LYT 10UF 20\% 160 V RAD | 400-143-00 | HDR 3P .100X1 STR |
| 300-001-00 | DIO SIG 1N4148 100V 500MW | 400-171-00 | HDR 2P .100X1 STR |

PART \#
400-172-00
400-173-00
400-210-00
400-214-00
410-003-00
500-022-00
500-023-00
500-024-00
501-002-00
510-017-00
510-021-00
550-219-00
550-221-00
550-222-00
550-223-10
550-223-20
550-224-00
550-225-00
550-237-00
550-244-00
550-247-00
550-249-00
550-255-00
550-275-00
550-277-00
551-029-00
551-029-10
551-032-00
553-002-01
553-002-03
553-006-03
553-007-03
553-010-03
553-015-03
553-017-01
600-016-00
601-006-00
611-029-02
611-038-00
660-005-00
700-005-00
700-010-00
700-010-04
700-011-00
700-028-02
700-028-04
700-041-04
700-047-04
700-050-04
700-055-00

DESC RIPTIO N TERM SOLDER-IN 18AWG TERM . 25 QKDS PCMTSTABLE TERM QDISC .250 F 18-22GA JACK 1/4V PCMNT1MM WASH INSL SILPAD K6 W/ADHESIVE SW RCKR ILUMINATED SW SUDE 4P3TMINI SW SLDE DPDTMINI RELAY SPDT 30AMP 110VDC FUSE SB 2OA 3AB 1/4X1-1/4 FUSE FB 10A 5X20MM 250V BRKTFAN PS - SR40.8 TOP COVER - M1200 BTM COVER - M1200 SIDE RAIL RIG HT- M1200 SIDE RAIL LEFT- M1200 BRACKETSUBSINK - M1200 HEATSINK COWUNG - M1200

SPRING CLP SUBSINK-M1200
BOTTOM COVER - M1400
SHIELD INPUT- M1200
PLATE XFMR MTG - M1200
PIGGYBACKCLP
SPACER PLATE - AMPUFIER
SCREEN MANIFOLD - M1400
EXTR SCRN DSPLY BZ-M1200
EXTR SCRN DSPLY BZ-M1400
EXTR FAB HEATSINK - M1200
CRS 18GA 36 X 120
CRS 18GA $48 \times 120$
EG 18GA 48 X 120
AL. $06348 \times 120$
EG 20GA $48 \times 120$
AL. 1251100 H14 $48 \times 120$
SS. 048 17-7 36 X 120
XFMR M1200 120 V
INDUC TOR AIR COIL 1UH WIR 18GA 1007 BLK 5IN ST2 WR 18G 1010 GN/YL 4IN ST2 22GA J UMPER WIRE
SEMS 8-32X1/2 PHP BLKZC TF 6-32X1/4 PHP BLKZC TF 6-32X3/8 PHP BLKZC MCH 4-40X1/4 BTNSKTBLKOX SEMS 6-32X3/8 PHP BLKZC SEMS 6-32X3/4 PHP BLKZC MCH 6-32X3/8 FL 100DG BLK MCH 10-32X3/8 FIL PHLCLR

MCH 6-32X3/8 FIL PHLCLR
MCH 4-24X3/8 PHP BLK HILO

PART \# DESC RIPTIO N
700-058-02 MCH 4-40X1/2 SKTCLRZC 700-059-00 HEX 5/16-18X3IN GD-5
704-001-01 PEMNUT6-32.038 STL 704-001-02 PEMNUT6-32.054 STL 704-007-01 PEMNUT4-40X.060L SS FLSH 704-023-03 STUD 6-32X. 500 STL FLSH 705-001-00 KEPNUT6-32 705-003-00 NUT(SPLD W/J ACK) 705-013-00 NUTHEX M7 BLK 705-015-00 NUTSLOTNC KL SPLD W/J ACK 705-018-00 NUTHEX 5/16-18 (GD-5) 706-036-01 6-32X.188L STLPEM 706-036-03 STDF 6-32X.312L STL PEM 706-045-00 SPCR PVC . 770 LED HI TEMP 710-002-00 WASHER (SPD WITH JACK) 710-013-00 WASH FLATNO. 6 FIBRE 710-017-00 WASH SPLTLCK 5/16 HEAVY 710-019-00 WASH FIBRE BLK (W/J ACK) 710-020-00 WASH NO. 4 COMPRESSION 710-022-00 WASH FLATNO. 4 FENDER 710-023-00 WASH STAR M7.020 THK 710-024-00 WASH FLAT5/16 HARD (USS) 711-001-00 LUG NO. 6 SOLDER STAR 712-020-00 BRKTANG 6-32X.037THK STL 712-021-01 RVTCL END.125X.062-. 125 740-004-00 STRAIN RELEF HEYCO 1244 760-048-04 KNOB 9MM DARK GRAY 760-061-00 KNOB VOLUMEM1200 770-006-00 FAN 80MM 24VDC-MECHATRONI 770-007-00 FAN 80MM 24VDC-PANASONIC 780-042-00 INSUL MYLAR INPUTSHIELD 780-114-00 RUBBER WASHER - THIN 790-002-00 BAG POLY $12 \times 18$ 2MIL 790-016-00 BAG POLY 24X30 4MIL-M1200 800-066-00 BOX M1200 800-069-00 BOX M1400 810-056-00 INSTTOP/BOTTOM - AMP 820-062-00 OWN MNL-M1200/M1400 820-062-10 OWN MNL-M1400i 830-016-00 REG \& WARR CARD FR SERIES

## - A 园。

## THE MIXER FIXER • MACKIE DESIGNS SERVICE

## NEWS

## R Series Fuse Upgrade

Model: $\quad$ FR Series M1200/1400, 110V only

Serial \#: M1200 prior to SN\# AF12626 Effective 4/28/97 M1400 prior to SN\# AH12657

Problem: Original fuse (15A) rated too low. Tum on inrush curent causes fuse to open.

Solution: Replace the main (F1) fuse with a 20A 250V slow blow fuse.
Attention:: Since you will be working directly with the AC power line, great care should be taken in all aspects of the installation. Power should be disconnected from the unit prior to the installation process.


## THE MIXER FIXER • MACKIE DESIGNS SERVICE

## NEWS

## RTywrap Mod

Model: FR Series M1200/1400

Serial \#: AFXXXXX to AFXXXXX Effective 5/8/97
Problem: The primary and secondary wires get pinched between the top cover and the fan shroud.

Solution: Install a 7 1/2" tywrap through the fan shroud tunnels. (740-016-00 15 1/16" tywrap, cut to $71 / 2^{\prime \prime}$ )


## THE MACKIE FIXER • MACKIE DESIGNS SERVICE NEWS

## RR series Amplifier ribbon replacement instructions (NEW: IMPROVED! J uly 2000)*

Models affected: FR series M1200, M1400, M1400i
M1200: All models. M1400i: Before Serial \#DA20889 and all models with "AM" prefix.
M1400 and 230v versions: Before Serial \#DB12700 and all models with "AH" prefix.
Add this as part of your nomal repair procedures.
Note: This bulletin replaces all previous rib bon bulletins.

## Symptom:

Ch. 1 or 2 output signal intermittently fades out, or cuts out completely and/or the DC supply rail fuses blow.

## Possible Cause:

The two nibbon cables from the input board may be defective

## Solution:

*Replace the input ribbon cables with an improved type in all of the above models, (including any which have had the previous ribbon bulletin completed).

## Safety Waming:

Caution! These instructions are for use by qualified personnel only. To a void electric shock, do not perform any servic ing unless you are qualified to do so. Refer all service to qualified personnel.

## Tools Required:

Phillipsscrewdriver, Torx and Allen drivers, needle nose pliers, safety glasses.

## Parts Required:

040-359-00
040-360-00
400-077-00

Ribbon cable, 28GA, 20 Pin, Length 4.25", PLD
Ribbon cable, 28GA, 20 Pin, Length 18", PLD
20 Pin Headers

Quantity =1
Quantity $=1$
Quantity $=2$

## Procedure:

1. Remove all cords (including the powercable and speakeroutputs) from the a mplifier.
2. Take off the top cover and inspect the ribbon cables. If they are not marked 040-359-00 or 040-360-00 then proceed as follows:

## Remove the input board:

3. Undo the XLR screws, TRS nuts, and pull out the four pot knobs.
4. Disconnect the short ribbon cable from the amp board, and the long cable from the front panel display board. On later amplifiers, you will have to remove the front display board first.
5. Disconnect the black ground wire from the amp board.
6. Undo the four screws on the right side of the chassis. This will give enough room to pull out the input board. Catch the two metal XLR plates before they fall inside (not present on later amplifiers).


## Procedure continued.

## Input board work:

If the two ribbon cables are soldered to the input board, follow steps 7 to 11 . If not, then go to step 12 .
7. Remove the metal shield plate and insulator sheet from the back of the input board.
8. Ca refully unsolder the ribbon cable headers from J 16 and J 11.

Discard part\#040-033-03, 4 inch ribbon cable.
Discard part\#040-033-02, 18 inch ribbon cable.
9. Solder two new headers (\#400-077-00) to the input board, with the cutout side pointing towards the center of the input board (i.e. downwards).
10. Replace the metal shield plate and insulator sheet onto the back of the input board.
11. Add part\#040-359-00, 4.25 inch ribbon cable to J 11.

Add part\#040-360-00, 18 inch ribbon cable to J 16.
Align each cable's color stripe with the header's pin 1.
Make sure both ribbons are fully inserted, then proceed to step 15.
If the two ribbon cables are not soldered to the board, follow steps 12 to 14 .
12. Discard part\#040-062-00, 4.25 inch ribbon cable.

Discard part\#040-062-02, 18 inch ribbon cable. You may have to undo the display board screws in order to remove it from J 1.
13. Add part\#040-359-00, 4.25 inch ribbon cable to J 11 .

Add part\#040-360-00, 18 inch ribbon cable to J 16.
Align each cable's color stripe with the header'spin 1.
Make sure both ribbons are fully inserted.
14. Refit the display board, once the long ribbon cable is securely attached to J 1 .

## Putting the input board back in:

15. Add the two metal XLR plates (where fitted) and carefully fit the input board back in place. Put the four pot knobs back after the board is in place.
16. It can be diffic ult getting the knobs back on through the chassis holes, but you can make it easier by snipping off a bit of the plastic center ridge, as shown in the little knob diagram below.
17. Add and tighten all the nuts a nd screws, a nd the four chassis screws (removed in step 6).
18. Make sure that all ribbon cables are sec ure and that all ends are fully inserted.
19. Reconnect the black wire from the input board to the amp board.
20. Replace the top cover.

21/ Perform a complete specification and safety test before retuming the unit to the customer.









$\qquad$


Note: Schematic is shown with 240vac values



$\square$.rgepacte rio-ril for novac version..
$\square_{20}^{20}$.eghates rl for loovac version.
$\square$ PCB, $M-1200 /$ M-1400 Soft start


