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Abstract
Measuring the impedance frequency response of systems by means of frequency sweep
electrical impedance spectroscopy (EIS) takes time. An alternative based on broadband signals
enables the user to acquire simultaneous impedance response data collection. This is directly
reflected in a short measuring time compared to the frequency sweep approach. As a result of
this increase in the measuring speed, the accuracy of the impedance spectrum is compromised.
The aim of this paper is to study how the choice of the broadband signal can contribute to
mitigate this accuracy loss. A review of the major advantages and pitfalls of four different
periodic broadband excitations suitable to be used in EIS applications is presented. Their
influence on the instrumentation and impedance spectrum accuracy is analyzed. Additionally,
the signal processing tools to objectively evaluate the quality of the impedance spectrum are
described. In view of the experimental results reported, the impedance spectrum signal-
to-noise ratio (SNRZ) obtained with multisine or discrete interval binary sequence signals is
about 20–30 dB more accurate than maximum length binary sequence or chirp signals.

Keywords: impedance spectroscopy, multisine, maximum length binary sequences (MLBS),
chirp, discrete interval binary sequences (DIBS), electrical bio-impedance (EBI), impedance
signal to noise ratio (SNRZ), crest factor (CF)

(Some figures may appear in colour only in the online journal)

1. Introduction

Both electrochemical and electrical impedance spectroscopy
(EIS) are widespread techniques that, over the last few
years, have become increasingly popular in fields such
as the food industry [1] or medical diagnosis [2] among
others. For example, a proof of this success is that
in the recent years, modern chemical analysis has been
revolutionized by electrochemical biosensors [3] because of
their accuracy, technical simplicity, high efficiency, portability
and miniaturization. The fact that binding biomolecules to

3 Author to whom any correspondence should be addressed.

solid supports changes their physical properties such as the
interface potential has been exploited using a wide variety of
sensing systems, i.e. EIS and cyclic voltammetry techniques.
Within them, electrochemical biosensors based on EIS are
rapidly developing because of the possibility of recording
information on biological events occurring at the electrode
surfaces, inducing capacitance and resistance changes [4–7].

To measure this impedance change, most EIS applications
are based on commercial impedance analyzers implementing
single impedance spectrum frequency measurements or based
on frequency sweep using linear or logarithmic steps [8].
As an example, figure 1 illustrates different application
examples for broadband EIS measurements. A common
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(A) (B)

(C) (D )

Figure 1. Four different application examples of broadband bi- and tetra-polar EIS measurements in bioengineering and medical
engineering fields. (A) Two-electrode biosensor impedance measurement for monitoring the cell concentration in adherent animal cell
cultures [9, 10]. (B) Schematic representation for measuring single-cell electrical bio-impedance (EBI) in a microfluidic device [11, 12].
(C) Local measurement of human lung tissue EBI during a nasal bronchoscopy [13–14]. (D) Detection of human heart graft rejection with
transoesophageal EBI measurements [15]. The notation for the electrodes is high current (HCUR), high potential (HPOT), low potential
(LPOT) and low current (LCUR). r(t) is the reference periodic broadband signal. i(t) and v(t) correspond to the current and voltage signals
measured. See figure 2 for details.

feature of commercial frequency response analyzers (FRA) is
the combination of high-precision hardware and user-friendly
software to simplify the data acquisition and analysis. In order
to perform the frequency analysis (e.g. 10−3–107 Hz), the
types of measurement arrangements that can be used depend
on the perturbation signals used, either sine-wave sweep or
broadband signals.

However, a measurement restriction of frequency sweep
EIS experiments is that they fail to determine the instantaneous
spectrum of time-varying processes. This is due to the fact
that the sweep technique has a measuring time which is not
always affordable to acquire the complete spectrum within
a short measuring time, mainly if very low frequencies are
considered in the spectral analysis. A practical example of
measuring times can be found in [16]. For a logarithmic
analysis carried out between 0.01 and 10 Hz with five
frequencies per decade, Solartron 1174 needs 276 s including
the calculation time. If a linear sweep is considered, then
1566 s are necessary (i.e. 1245 s for the acquisition time and
321 s for the total calculation time). A different EIS approach
based on broadband signals overcomes the mentioned
limitations. Broadband EIS enables the user to simultaneously
collect multiple impedance spectrum data being suitable for
applications in continuous monitoring of chemical reaction
processes, mass fabrication and decentralized in-field analysis
[17, 18] or for the determination of the time-varying
instantaneous impedance spectrum [19–21]. However, one
limitation of the broadband EIS technique is that the

increase in measuring speed affects the accuracy of the
impedance spectrum and therefore the accuracy (variance)
of the impedance model estimates. Additionally, there is
a loss of impedance sensitivity, which can be critical in
applications where changes in impedance are very small, such
as for example in electrochemical applications for the bio-
recognition of processes occurring on the biosensors.

In this paper, the reader will find a detailed description
of the trade-off between the impedance spectrum accuracy
and the time/frequency properties for four different periodic
broadband excitation candidates to be used in broadband
EIS measurements. Before starting the comparison, some
important concepts will be introduced to the reader in section 2
as the impedance spectrum signal-to-noise ratio (SNRZ) and
the crest factor (CF). Once the reader is familiar with the linear
time-invariant (LTI) signal processing tools that will be used
in this paper, we will describe in section 3 the time/frequency
properties of the periodic excitations considered in this
study. The excitations considered are maximum length binary
sequences (MLBS), chirp, discrete interval binary sequences
(DIBS) and multisine. The case study to support the validity of
the theory is presented in section 4. In section 5, a discussion
of the strengths and weaknesses of the analyzed signals for
broadband impedance spectroscopy measurements and their
influence on the instrumentation and impedance measurement
accuracy is presented. Finally, section 6 concludes the paper.
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2. Broadband impedance spectroscopy
measurements using periodic excitations

There are many different types of electrical stimuli which
are used in EIS. The classical approach is the application of
a single-frequency sinusoidal current stimulus to the system
under test while measuring the phase shift and amplitude of
the resultant voltage of the response. The impedance spectrum
can be determined by sweeping the exciting frequency in
the frequency range of interest. The major advantage of this
approach is the high signal-to-noise ratio (SNR) obtained at
the cost of the measuring time. For many electrochemical
applications, this method has been widely used based on a
single-sine wave of a given frequency superimposed on a dc
bias potential, and then applied to the working electrode. This
process is repeated by scanning the frequency and computing
the impedances from the ac voltages and current data at
desired frequencies. The main problem with this approach
arises primarily from the relatively long data-acquisition time
required to measure the whole impedance spectrum. This is the
major reason why the frequency sweep technique is discarded
in applications where high throughput real-time data and on-
line monitoring are required.

The first measurements of full impedance spectra without
frequency scanning were not made until approximately in the
1970s, with the publication reported by Creason et al in [22].
Their approach consisted in mixing 15 sine waves spread over
two decades. A little later, Creason et al in 1973 [23] and
Schwall et al in 1977 [24] used the random phase multisine
signal. Contemporaneously, Ichise and co-workers in 1974
[25] evaluated the suitability of MLBS for characterizing RC
circuits. The reader can find an exhaustive overview of the
properties of signals in [26] and their recent application for
both electrochemical and biomedical applications using binary
signals in [27, 11, 12, 28], chirp [29–34] and multisine signals
in [35–44, 21, 13].

In broadband EIS measurements using periodic
excitations, the spectral analysis tools used for estimating
the impedance frequency response are still limited today.
In some cases, the impedance processing approaches do
not take advantage of the fact that signals are periodic,
as for the multisine excitation signal processing framework
described by Troltzsch et al in [45, figure 7]. The data should
not have been windowed because they were acquired from
steady-state multisine measurements and, consequently, a
rectangular time window should have been used. Additionally,
zero padding should have been avoided since the authors
measured an integer number of periods (three) of a periodic
multisine excitation. The zero padding technique was also
implemented by Sun et al in [11] one year later to make their
acquired MLBS length a multiple of 2n before calculating the
discrete Fourier transform (DFT). In both cases, leakage errors
were unintentionally introduced in the impedance spectrum
by the authors’ misuse of periodic excitations, while, by
definition, the steady-state impedance response determined
from an integer number of periods measured for any periodic
(broadband) signal processed with the DFT, i.e. multisines,
MLBS or chirps, does not have leakage.

However, sometimes the use of broadband signals is
conditioned by the user experience and/or the application [46]
as for example the measurement of time-varying bioimpedance
[13, 21, 74, 75]. Recently, Min et al stated in [34] that,
thanks to the specific properties of short chirp pulses, the
most accurate impedance spectrum can be obtained. However,
no data (nor the impedance spectrum SNRZ nor the variance
σ 2

Z ) were reported to confirm their assertion. Moreover, if the
impedance spectrum accuracy was of concern, using fractional
periods of a periodic (chirp) signal instead of full periods
must be avoided. The impedance spectrum precision will be
affected by the leakage errors introduced when using fractional
periods of a periodic excitation. Additionally, depending on the
user’s frequency band of interest, it may give poor results at
high frequencies in a noisy environment because the injected
power will be much lower than expected. The reader is
referred to [47, 48] for an exhaustive study of the robust
use and design of periodic excitations for accurate broadband
frequency response measurements.

Widely, spectral processing tools most commonly used
for broadband EIS measurements using periodic excitations
just simply calculate the impedance frequency response as
the division of the voltage and current Fourier coefficients,
as described by Nahvi et al in [49] (see equation (7) therein)
and more recently by Min et al in [34, figure 11]. However,
the main limitation associated with this approach relies on the
fact that no information is gathered from the raw measurement
about the impedance spectrum accuracy. In order to objectively
quantify and evaluate the accuracy of the impedance spectrum,
the authors propose either the impedance spectrum variance
σ 2

Z or the impedance SNRZ to be additionally calculated. In the
following, section 2.1 details how to calculate both quantities
from the current and voltage noise Fourier coefficients.

2.1. Impedance spectrum signal-to-noise ratio (SNRZ)

Consider the measurement setup shown in figure 1 to
determine the impedance spectrum accuracy of an LTI
impedance system modeled as Z (�). The equivalent model to
this measurement setup corresponds to an impedance error-in-
variables measurement framework [50, 51] in an open loop
setup as shown in figure 2, where the true voltage v0(t)
and current i0(t) variables are assumed to be measured with
additive current and voltage noise error sources ni(t) and nv(t),
namely {

v(t) = v0(t) + nv(t)
i(t) = i0(t) + ni(t).

(1)

The estimated impedance spectrum Z(k) is calculated as
the mean impedance spectrum applying the classical spectral
analysis based on cross and auto power spectrum [51], namely

Z(k) = 1

M

M∑
n=1

Z[n](k) = 1

M

M∑
n=1

V (k)[n]

I(k)[n] . (2)

The scheme consists of the steady-state measurements of M
consecutive periods of both current i (t) and voltage v (t)
variables, where V (k)[n] = DFT

{
v(t)[n]

}
and I(k)[n] =

DFT
{
i(t)[n]

}
are the voltage and current Fourier coefficients

(see figure 3). In practice, the Fourier integral transformation
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Figure 2. Block schematic for an impedance EIV measurement
using a FRA; the impedance spectrum Z(�) is estimated from the
measurement of the voltage v(t) and current i(t) corrupted by
additive noise sources nv (t) and ni(t); L(�) is the front end transfer
function from the reference excitation to the current signal. See
figure 3 for signal processing details.

cannot be performed for two major reasons: (i) the current
and the voltage signals, i(t) and v(t), are only available in a
certain time window of the measurements, say t ∈ [0, T ], with
T being the measurement time; (ii) the input–output signals
are only accessible as sampled signals, i(nTs) and v(nTs), with
Ts being the (constant) sampling period of the input–output
signals and n is an integer. Therefore, the Fourier integral
should be replaced by the (normalized) DFT defined as

X (k) = 1

N

N−1∑
n=0

x(nTs) e−j2πkn/N (3)

with x = {i, v}, X = {I,V } and N = T/Ts being the
number of time domain samples that are collected during
the measurement process and the index k in X (k) in (3) is
the frequency bin corresponding to the kth DFT frequency
ωk = k 2π

T . In practice, the DFT of a signal can be efficiently
computed by the fast Fourier transform (FFT), which is,
nowadays, offered by numerous numerical packages.

The impedance spectrum variance σ 2
Z is calculated from

the input–output current and voltage noise variance estimation

σ 2
I and σ 2

V as follows:

σ 2
Z (k) =|Z (k)|2

M

(
σ 2

I (k)

|I (k)|2 + σ 2
V (k)

|V (k)|2 − 2�e

(
σ 2

V I (k)

V (k) I(k)∗

))
,

(4)

where the superscript ∗ denotes the conjugate operator and I,
σ 2

I and V , σ 2
V correspond to the mean spectrum magnitude

and the variance of Fourier transformed current and voltage
coefficients, respectively, calculated as

I(k) = 1

M

M∑
n=1

I(k)[n]

σ 2
I (k) = 1

(M − 1)

M∑
n=1

(I(k)[n] − I(k))
2

V (k) = 1

M

M∑
n=1

V (k)[n]

σ 2
V (k) = 1

(M − 1)

M∑
n=1

(V (k)[n] − V (k))
2

σ 2
V I(k) = 1

(M − 1)

M∑
n=1

(V (k)[n] − V (k))(I(k)[n] − I(k))
∗
.

(5)

At this point, it is possible to define the so-called
impedance SNRZ from (4), which can be understood similar
to the SNR of a signal but applied at the level of an impedance
frequency response, and then calculated from noisy current
and voltage measurements as defined in (1). Then, the general
expression for impedance SNRZ can be defined at the excited
frequency k as follows:

SNRZ(k) = |Z(k)|2
σ 2

Z (k)
, (6)

where σ 2
Z (k) is the impedance spectrum variance at the excited

line k estimated from the current and voltage noise estimation
σ 2

I (k) and σ 2
V (k) according to (4). Merely by way of example,

if we assume that current–voltage noise covariance σ 2
V I(k) is

zero, then it is possible to find a reduced expression for the
impedance SNRZ in terms of the current and voltage SNRI

and SNRV , namely
1

SNRZ (k)
≈ 1

SNRI (k)
+ 1

SNRV (k)
. (7)

Figure 3. Block diagram proposed by the authors according to equations (4)–(6) for the steady-state estimation of the impedance frequency
response Z(k) using broadband periodic excitations; besides the estimation of Z(k), the impedance spectrum variance σ 2

Z (k), the impedance
SNRZ (k), the voltage SNRV (k) and the current SNRI (k) are additionally calculated at each excited frequency k. M, P and N stand for the
integer number of periods measured, samples per period and excited frequencies, respectively. The reader may compare this block diagram
with figure 11 from [34].
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Figure 4. Example of a periodic signal (three periods are shown)
with a poor CF and its amplitude histogram (right). Most signal
amplitude values are concentrated in a small y-axis amplitude range
(1) compared to the signal overshoot (2).

Equation (7) stresses, in addition to the fulfillment of
the experimental constraints, that both the current SNRI and
voltage SNRV should be maximized if accurate impedance
spectra SNRZ is desired. Either way, the reader is referred to
use (6) because, in general, it might not be certain that the term
σ 2

V I(k) can be neglected. At this point, the aim of studying the
time/frequency features of input signals and their influence
on the impedance SNRZ at the exciting frequencies within
the experiment constraints becomes more important, which is
described in section 3.

2.2. Crest factor (CF)

Because there are many broadband excitations proposed in the
literature that can be applied for EIS measurements, each one
with its own time and frequency properties, a signal quality
metric is needed to compare them. This metric measures how
much amplitude is consumed by the signal to inject a certain
power level into the system. Although there are many possible
merit figures for comparing signals, by far the most popular
is the CF because its interpretation is simple, even by visual
inspection (see figure 4). The CF of an excitation u(t) is defined
as the ratio of its peak value and its effective root mean square
value (rmse) given by

CF(u) = upeak

urmse
. (8)

Another interpretation of the CF is possible using the
Parseval theorem. The interpretation of this theorem is that
the total energy contained in the signal u(t) summed across
all of time t is equal to the total energy of the signal’s
Fourier transform U (ω) summed across all of its frequency
components ω. Then, the term in the denominator in (8) can
be rewritten as

CF(u) =
max

t∈[0,T ]
|u(t)|√ ∑

∀ω∈�

U (ω)U∗(ω)
(9)

with T being the measurement time and U (ω) the excitation
amplitude spectrum calculated as the Fourier transform of u(t).
It is important to highlight that from (9), the CF is a function of
the frequency band � used for the measurement. This means
that the injected power into the impedance system described by
the excitation, present in the denominator term of (9), is limited
to the excited frequencies ω where the impedance spectrum is

Table 1. Effective number of bits according to (12) required for
different SNRs depending on the broadband excitation CF shown in
figures 5 and 6.

SNR (dB)

40 45 50 55 60

MLBS 6 7 8 9 10
Chirp 7 8 9 9 10
DIBS 6 7 8 9 10
Newman 7 8 9 10 10
Schroeder 7 8 9 10 10
Random 8 9 10 10 11
Optimizeda 7 8 9 9 10

a [53].

measured. That means that any power that is injected outside
the measurement band will contribute to excite the system,
but will not contribute to extract more information from the
measurement. Thus, it is possible to rewrite (8) taking this into
account as follows [51]:

CF(u(t)) =
max

t∈[0,T ]
|u(t)|√

1
T

∫ T
0 u2(t)dt ·

√
Pint
Ptot

(10)

with Ptot being the total power of the signal and Pint the power
in the frequency band of interest.

2.3. Influence of the broadband signal’s CF on its acquired
SNR

In the following, the influence that the signal CF has on its
measured SNR is discussed. Assume that a broadband signal
is digitized using a b-bit A/D converter (see figure 2) where
the quantization noise is the dominant error source. Then, it
can be found that the SNR of the acquired (broadband) signal
is decreased due to its CF as follows [52]:

SNR = 6.02b + 1.76 − 20 log10

(
CF√

2

)
. (11)

If the CF is replaced by
√

2 in (11) (this is the CF of a
sine wave), then the well-known expression for the SNR
when acquiring a sine wave turns out. Therefore, (11) can
be understood as a natural extension valid when acquiring a
broadband signal with a given CF. Hence, the effective number
of bits (ENOB) is

ENOB =
SNR − 1.76 + 20 log10

(
CF√

2

)
6.02

. (12)

This result can be interpreted as follows: for a fixed number
of b-bits of the A/D converters shown in figure 2, current and
voltage signals with a large CF, e.g. i (t) and v (t), will be
measured with a worse SNR than if they are smaller. In other
words, for a given SNR, table 1 illustrates that the smaller the
broadband signal CF, the better, because fewer bits are needed
to obtain the specified accuracy from the measurement.

The implication for EIS applications is twofold: from an
implementation point of view, acquiring low broadband CF
signals has a direct impact on the FRA acquisition system
(see figure 2); this is the FRA cost. On the other hand, it

5
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has been shown in (7) that the impedance spectrum accuracy
SNRZ depends on both SNRV and SNRI . Thus, measuring
large CF voltage v(t) and current i(t) signals should be
avoided since they will contribute to decrease the SNRV and
SNRI , respectively, and as a consequence, the final impedance
spectrum SNRZ .

In view of the theory presented until now, the importance
of choosing and designing the excitations for having reliable
impedance data becomes clear. Next, section 3 focuses on the
study of the time, by means of the CF, and frequency properties
of four different broadband excitations suitable for being used
in EIS measurements.

3. Survey of the strengths and weaknesses of periodic
broadband excitations for EIS measurements

In this section, the reader will find the major properties of four
periodic signals suitable for accurate broadband impedance
spectroscopy measurements. The excitations considered are
the following: chirp [31, 34], MLBS [54, 11], DIBS [55] and
multisine signals [39]. Aperiodic excitations, i.e. white noise,
are not analyzed, because their use introduces the well-known
leakage problem when using the FFT [51, 48].

3.1. Maximum length binary sequences (MLBS)

The MLBS are binary periodic signals generated digitally.
They can easily be implemented with very few hardware
resources using a linear feedback shift register. MLBS are
one class of pseudo-random binary sequences, while others
are quadratic residue sequences, Hall sequences and twin
prime sequences, all of which have the same autocorrelation
properties; these are of the longest period and the shortest
autocorrelation length, and therefore have the same power
spectral properties [56, 57, 54].

MLBS are very popular due to their hardware
implementation simplicity and the fact that they can be
generated to excite up to GHz using fast logic circuits. The
MLBS amplitude power spectrum is relatively flat due to the
sinc introduced by the zero-order hold at the output. However,
MLBS has an amplitude spectrum whose components decrease
inversely proportional to the frequency, meaning that its
resulting SNR will be lower compared to a single frequency, or
a set of frequencies will be lower at high frequencies because
the energy is distributed over the whole frequency range. Like
any binary signal, MLBS has the strength that it is robust to
noisy environments and also has the optimal full-band CF. At
this point, it is necessary to further explain the meaning of
the full-band CF. As was shown by Schoukens et al in [58],
the MLBS CF varies as a function of the spectral band �,
decreasing toward 1 as the band � increases toward infinity,
namely

CF

(
u(t)
�→∞

)
→ 1

with u(t) any binary periodic signal, i.e. MLBS. In other words,
for MLBS power is not all concentrated in the impedance
frequency band of interest, and part of it is wasted by exciting
unwanted frequencies, also above the sampling frequency

(see figure 5(A)), without providing any information of the
system. Therefore, the reader should note that if the impedance
spectrum is band-limited and it is measured using any binary
signal, then the resultant signal will have a CF which will be
larger than 1 (see (10)).

3.2. Discrete interval binary sequences (DIBS)

DIBS are periodic binary multifrequency sequences with
special properties, where the sign of the signal can change
only at an equidistant discrete set of points in the time
domain [55]. As a result of this, a great part of the excitation
power is concentrated in the desired frequency sub band (see
figure 5(C)).

In contrast to the MLBS and chirp, the DIBS amplitude
power spectral density can be optimized by choosing
the appropriate switching sign sequence. Since the DIBS
excitations are binary, the CF is typically between 1.1 and
1.2. In a similar manner to the recently reported use of Walsh
functions in [28] for broadband EIS measurements, applying
DIBS enables us to focus a great part of the amplitude energy
at an arbitrary discrete set of frequencies. Contrary to binary
signals generated with Walsh functions, the advantage of DIBS
is that the fundamental frequencies must not be a combination
of a primary excited frequency only.

3.3. Chirp

The chirp excitation is a sine sweep excitation, which can
easily be implemented on a field programmable gate array
using a direct digital synthesizer [34] or using a generic
arbitrary waveform generator defining the excitation parameter
set. The corresponding time domain function for a linear chirp
is [51]

u (t) = A sin ((at + b) t) 0 < t < T0, (13)

where T0 is the sweep period, a = π (k2 − k1) f 2
0 is known as

the chirp rate, b = 2πk1 f 2
0 , f0 = 1/T0, k2 > k1 ∈ N. k1 f0 and

k2 f0 are fmin and fmax, respectively, and represent the lowest
and the highest excited frequencies.

Although there are many chirp excitations depending
on the frequency variation with time [31, 59, 34], the most
common uses a frequency swept up or down. These chirp
signals are known in the literature as up-chirp or down-
chirp. Compared to a multisine excitation, a chirp excitation
is easily generated and all its extreme amplitude values
are the same, resulting in a low CF (typically about 1.45).
The main drawback is the lack of freedom to choose an
arbitrary amplitude power spectrum. The chirp amplitude
power spectrum is neither really flat at low frequencies, nor in
the wanted frequency band, due to the ripple (see figure 5(B)).

3.4. Multisine

The idea behind the multisine signal is to keep the advantages
of the sine wave, but to reduce the measurement time by
exciting all the frequencies simultaneously [60–63]. To this
end, the multisine signal expression is formed by the sum of N
frequencies, each one with its own amplitude and phase. The

6
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Figure 5. Sum of the periodic broadband excitations considered in the paper. (A) MLBS time (left) (CF = 1) and power spectrum (right).
MLBS has a spectrum which decreases asymptotically to zero, inversely proportional to the frequency. (B) Up-chirp time (left) (CF = 1.45)
and power spectrum (right). (C) DIBS time (left) (CF = 1.1) and power spectrum (right); in contrast to the MLBS sequence, the DIBS focus
most of the excitation energy at the user-defined set of frequencies. Binary multifrequency DIBS signals concentrate from 70% to 80% of
the excitation energy at these excited frequencies, significantly greater than 65% reported in [28] based on Walsh functions. (D) Multisine
time (left) and its power spectrum (right) (CF = 2.30).

time signal expression for a real-valued multisine signal can
then be represented by a Fourier series, i.e. a trigonometric
sum of order N:

u (t) = �e

{
N∑

n=1

an ej(2π fnt+ϕn )

}
, (14)

where N is the number of exciting frequencies, an are the
fundamental amplitudes and ϕn are the phases. If no specific
prior knowledge of the system is available, then the amplitudes
are often taken to be equal to excite the system with a flat
amplitude spectrum. If the impedance frequency response is
known in advance, the multisine power spectrum can then be
optimized [39, 43] (see figure 5(D)).

3.4.1. Multisine time properties. The resulting CF for a real
multisine (14) is given by (see the appendix)

CF (u) =
√

2
max

t∈[0,T ]
|u (t)|√

N∑
n=1

a2
n

. (15)

Note that the multisine effective rms level, that is, the
denominator term, is independent of the phase angles ϕn (it
only depends on the amplitudes an); its peak value, that is,
the numerator term, is strongly dependent on them. For this
reason, phases ϕn have to be chosen carefully because of their
influence on the multisine time-domain signal shape.

The way to control the CF is to choose the phases of
the multisine appropriately. A solution to this problem was
proposed by Schroeder in [64]. The only assumption made is
that the number of exciting frequencies in the specified power
spectrum is large and they are concentrated in a bandwidth
that is small compared to its center frequency:

ϕm = ϕ0 − 2π

m−1∑
n=0

(m − n) · |am|2
M−1∑
k=0

|ak|2
,

m = 1, . . . , M − 1, ϕ0 ∈ [−π, π ]. (16)
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Figure 6. Flat multisine time properties. (A) Newman phases (left) and their amplitude histogram (right) (CF = 1.67). Most of the multsine
amplitudes are focused on the peak value, while the rest are spread in between. (B) Schroeder phases (left) and their amplitude histogram
(right) (CF = 1.67). (C) Random phases (left) and the amplitude histogram (right) (CF = 3.10). Random multisines have an amplitude
histogram almost identical to pure aperiodic random noise. (D) Numerically optimized phases [53] (left) and their amplitude histogram
(right) (CF = 1.45). The amplitude histogram illustrates the influence of the optimization in the amplitude values, being the same as a chirp
and almost as low as a sine wave (CF = 1.41).

This problem was also treated by Newman in [65] one
year later, who proposed

ϕn = πn2

N
, n = 0, . . . , N − 1. (17)

The effect of the CF optimization can be easily identified if
the histogram of the excitation amplitude values is represented.
Newman phases achieve that most of the amplitude values are
focused close to its peak value (CF = 1.67) (see figure 6(A)).
Ideally, all excitation values should be concentrated in the peak
values. However, this only happens if the full-band MLBS
binary signal is considered (CF = 1).

At this point, the reader should note that in order to
calculate the Newman phases only the number N of the exciting
multisine frequencies is needed. In contrast to the Newman
phases, the Schroeder phases take the amplitudes into account
and therefore often get better results in the case of non-constant

multisine amplitudes (see figure 6(B)). In the case of constant
amplitudes, the Schroeder phases simplify to

ϕm = ϕ0 − 2π

M

m−1∑
n=0

(m − n) = ϕ0 − 2π

M
· m · (m + 1) ,

m = 1, . . . , M − 1, (18)

where ϕ0 ∈ [−π, π ]. When ϕ0 = 0, Schroeder’s phases
correspond to the negative Newman phases and an additional
linear term. The additional linear term is irrelevant because
it corresponds simply to a shift in the starting time of the
multisine. Schroeder’s phases give reasonable results when the
user-defined spectrum is flat and wideband, but under other
conditions (i.e. bandlimited or in the presence of harmonic
suppression) the results can be very undesirable.

Another simple option is to design the multisine
excitations based on uniformly distributed random phases
between 0 and 2π . The random phases make the multisine
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amplitude histogram almost Gaussian with a zero mean (see
figure 6(C)). That means that all the excitation values are
mostly distributed around 0 V. In the time domain, the random
multisines look like random noise, and that is the reason
why they are commonly referred in the literature as ‘periodic
noise’. However, in contrast to pure aperiodic random noise,
the amplitudes of a random multisine are not random and this
makes a big difference for the signal processing techniques
used. From all the phase distributions considered until now,
random multisines have by far the worst CF (3.10 against 1.67
from Newman and Schroeder).

It is important not to forget that the goal is to design
the multisine in time so that the maximal impedance SNRZ is
achieved. Then, it turns out that the random multisine is not
the optimal solution. The best option is to design the multisine
phases such that the resultant multisine amplitude histogram
has almost binary behavior [66, 67, 53]. In this case, almost all
the energy is focused on the maximum excitation amplitude
(see figure 6(D)). When the multisine phases are optimized,
lower CF can be obtained (i.e. 1.45), which is as low as a
chirp signal, but with the advantage of having the freedom to
arbitrarily design the power spectrum.

4. An illustrative example

In order to compare the excitation time/frequency properties
and to validate the theory presented in section 3, all
the excitations were applied to measure a glucose sensor.
Measurements were performed using a custom broadband
impedance analyzer [21] built around a rugged PC-
platform based on a PXI System (PCI eXtensions for
Instrumentation) from National Instruments. The custom
impedance measurement system used includes an embedded
controller PXIe-8130, a two channel high-speed digitizer card
PXIe-5122 (100 Msamples/s, 64 MB/channel, 14 bits) and an
arbitrary waveform card PXI-5422 (200 Msamples/s, 32 MB,
16 bits).

4.1. Setup

For the measurements of glucose, we employed a set
of commercial strips available to measure the level of
blood glucose for diabetics. The sensor strips used are
Accu-Chek Comfort manufactured by Roche Diagnostics
GmbH Mannheim, Germany. The strip is formed by two
electrodes and a window where the dissolution of glucose
and physiological saline solution is introduced by capillarity.
The goal of the experiment is not intended to know the
concentration measured, but to validate the theory presented
in section 2 and to see a significant difference between the
accuracy in the impedance SNRZ measured. To do that, the
measurements have been determined based on the impedance
spectrum SNRZ given by (6). All excitations were peak
amplitude limited to 25 mV superposed on a dc bias potential
of 0.5 V. One hundred, M = 100, periods were averaged (20
ksamples/period, Fs 20 MHz, 1 ms/period, measurement time
100 ms) (see figure 2). The measurements were done at three
different concentrations of glucose diluted in physiological

saline solution: 50%, 25% and 12.5%. Twenty-six excited
frequencies have been considered distributed in the frequency
band from 1 kHz up to 1 MHz following a log-odd distribution:

f(kHz)={1, 3, 5, 7, 11, 15, 19, 25, 33, 41, 51, 63,77,95,117,

143, 173, 209, 253, 307, 371, 447, 539, 649, 781, 939}.
(19)

4.2. Results

In the case of measuring low concentrations of glucose, both
the chirp and MLBS signals have an impedance SNRZ that is
below the acceptable range in order to correctly interpret the
measures (SNRZ < 30 dB). For that reason, both the MLBS
and chirp have been omitted in figure 7(A). The impedance
SNRZ highlights how important is the choice of the excitation
as well as its time/frequency properties in order to obtain
reliable measurements. An increase in glucose concentration
(25%) (case (B)) implies that the impedance spectrum SNRZ

increases significantly (between 20 and 25 dB). However, there
are notable differences between the accuracies measured by the
signals. Note that the impedance spectrum SNRZ obtained with
both MLBS and chirp signals are of the order of the impedance
spectrum SNRZ as in the previous case obtained by the DIBS
and the multisine signals (35–55 dB). Nevertheless, in this case
the multisine and the DIBS signal impedance spectrum SNRZ

are about 20–30 dB more accurate. The difference between
the DIBS and the multisine is approximately 5 dB at all
frequencies. If we increase the concentration of glucose to
50% (C), all signals increase their impedance spectrum SNRZ

about 10 dB. It can be seen that the trend between signals
is the same as in the previous case, with differences from 20
to 30 dB. Considering an application with a measurement
time restriction and that there is no restriction regarding
the excitation used, excitations like MLBS and chirp will
obtain less accurate impedance spectra compared to DIBS
or multisine signals.

5. Discussion

5.1. Time domain: crest factor

The CF gives an idea of the signal’s compactness in time,
measuring the distribution of the signal values over the
excitation amplitude range. A small CF means that most values
are distributed in a dense way between the minimum and
maximum values of the signal, while a large CF just indicates
the opposite: the amplitude elements are spread in a poor
amplitude range. A lower CF therefore implies that more
measurement power can be provided to the system resulting
in an increase of the SNR of the measurements. The possible
values for the CF range from 1 up to infinity, with the limits
representing the best and worst possible cases. CF reduction
allows a larger energy to be injected for a given input range of
the measurement device, and avoids running into A/D or D/A
saturations. It also helps to keep the system in its linear region,
which is of extreme importance when measuring, in order to
avoid nonlinear behavior.
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Figure 7. Nyquist plot of the impedance spectrum and impedance SNRZ for concentration of glucose diluted in physiological saline solution
at (A) 12.5%, (B) 25% and (C) 50%.

A recent contribution to the improvement of signal
features for broadband EIS measurement can be found in [68]
and it is appropriate to clarify certain aspects. On the one hand,
the authors argued that a binary signal always has a unitary
CF. As thoroughly discussed in section 2.2 and section 3.1
and demonstrated by Schoukens et al in [58], this is true only
if the full-band binary signal spectrum is considered. At the
moment, binary signals are used as input signals for frequency
response measurements, thus the resultant binary signal CF
will depend on the user’s frequency band of interest. Therefore
if the impedance measurement is band-limited, the resultant
binary signal’s CF will be larger than 1. On the other hand, the
authors obtained a phase optimized multisine (CF = 2.50) with
the clipping algorithm described by Van Der Ouderaa et al in
[67]. In fact, it is possible to obtain better optimized multisines
with a lower CF (CF = 1.45) as shown in section 3.4.1 using
the improved algorithm proposed by Guillaume et al a few
years later in [53].

The MLBS and DIBS being binary signals (the amplitude
shifts between two values), they have the optimal CF (CF = 1)
only if the full signal spectrum is considered. Unlike the
mentioned MLBS and DIBS signals, chirp excitation has a
CF that is typically 1.45. Regarding the multisine, the phases
must be selected to minimize its CF in order to reduce the
overall amplitude span of the excitation while maintaining the
same level of power in the exciting frequencies. In the end,
the multisine CF depends on its power spectrum complexity
as well as the phase distribution used. Multisine CF values
range from 1.45 for Chebyshev optimized phases (the same as
chirp signals), 1.6 to 1.7 and 1.6 to 2.3 when using Newman

and Schroeder phases respectively and, finally, around 3 using
random phases.

5.2. Frequency domain: excitation power spectrum

From the frequency domain point of view, we can classify
the signals based on how they distribute their energy in the
spectrum. On the one hand, the chirp and the MLBS signals
have the characteristic that their energy is distributed exciting
every single spectral line in the impedance spectrum, but in
different ways. In the case of the MLBS, the power spectrum
decays as a function sinc2, which means that if a flat spectrum
excitation is desired, only a small portion of the energy will
be effective because the rest of the energy is wasted exciting
unnecessary frequencies. As a difference from the MLBS,
the chirp excitation presents a spectrum which is more or
less flat in the band of interest. Nevertheless, the majority
of excitation power is concentrated at high frequency for the
signal considered. For this reason, the low frequencies will
obtain more scattered impedance data due to the bad SNR at
these frequencies. The reader should note that with a chirp as
well as the MLBS excitation, it is possible to create a band-
pass power spectrum. However, a major drawback is that it is
neither possible to create a signal with an arbitrary amplitude
nor an optimized spectrum.

The main difference that multisines offer with respect
to the rest of the excitations studied is that the user has
total flexibility to directly specify the excitation power
spectrum (amplitudes and excited frequencies). The possibility
of creating an arbitrary excitation power spectrum given
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by multisines is very important. The reason is that, given
a measuring time, it can be time–frequency optimized to
measure an impedance spectrum, as was demonstrated in [39]
and more recently in [43]. Unlike other excitations such as
chirp, the user has total control of the multisine time/frequency
domain properties and this can be an advantage depending on
the user’s experience.

As the first approach for optimizing in both the time and
frequency domains, multisine for broadband electrochemical
impedance spectroscopy measurements was presented in
[69, 70]. Popkirov et al suggested that the multisine
fundamental amplitudes should be designed following the
measured impedance spectrum magnitude. With regard to the
multisine CF optimization, the authors used the approaches
described in [64, 67]. Based on their results, an improvement of
more than 25% on the impedance spectrum standard deviation
was obtained.

More recently, Land and co-workers in [71] used the
same phase algorithm [67] but with a multisine amplitude
spectrum that, contrary to Popkirov et al, applies more energy
at high frequency than at low frequency. For the case study
described in section 4, this distribution of amplitudes would
be counterproductive if we were interested in measuring the
whole impedance spectrum with the same impedance SNRZ .
As shown in figure 7, the impedance SNRZ is lower at
low frequencies than at high frequencies, so the multisine
amplitude spectrum should be the opposite, i.e. as the one
proposed by Popkirov et al.

As demonstrated by Sanchez et al in [40], the Popkirov
solution provides fewer scattering data at low frequencies
but at the cost of getting dispersive points around the
impedance characteristic frequency where there is more
valuable information about the impedance spectrum. The same
explanation can be extrapolated to justify that the suggested
multisine amplitude spectrum proposed in [71] will provide
fewer scattering data at high frequencies but at the cost of
getting dispersive points around low–medium frequencies.

From a perspective of identifying an impedance model,
it is important to have as much information as possible
at those frequencies where the impedance spectrum varies
more rapidly with frequency, not at low or high frequencies
where the impedance spectrum response is almost flat. This
idea was originated by Sanchez et al in [39] and further
studied in [43]. The authors calculated the D-optimal excitation
spectrum (amplitude spectrum and frequency distribution)
that maximizes the amount of impedance information and
minimizes the variation of the impedance model parameter
estimates. The optimal excitation spectrum focuses the signal’s
energy, increasing both the signal’s amplitude spectrum and
the number of measurement frequencies, where impedance
spectrum variation with regard to the frequency is larger.

Finally, it is also necessary to consider the distribution
of the fundamental frequencies within the multisine design.
Therefore, the multisine logarithmic frequency distributions
used in [68] should be avoided in real measurements. The
reason is that the harmonic frequencies generated due to even
nonlinearities will mislead the estimation of the impedance
frequency response at the multisine fundamental frequencies

as shown in [72]. Instead, it would be preferable to use a
odd or log-odd frequency distribution (see (19)). The reader is
referred to [43] for a detailed study of the multisine spectral
properties for broadband EIS measurements.

6. Conclusions

Most broadband EIS measurements using periodic excitations
for estimating the impedance frequency response use the DFT
and then just calculate the impedance spectrum as the division
of the voltage and current complex Fourier coefficients.
Nevertheless, it is possible to obtain more valuable information
about the impedance measurements if, in addition to the
classical magnitude and phase impedance spectra plots, either
the estimated impedance spectrum variance σ 2

Z (see (4)) or the
impedance SNRZ (see (6)) is also reported as for example in
[19, 73, 20, 38, 21, 14]. With these powerful tools in hand, the
benefits to the user are multiple, i.e. offering the possibility
of evaluating the raw measurement quality, the accuracy of
the impedance spectrum, the presence of nonlinearities and,
finally, questioning whether the signal processing tools used
were appropriate and therefore the validity of the impedance
data modeling.

The theory presented does not depend on the impedance
measurement strategy, i.e. either two- or four-electrode
impedance measurements, as shown in figure 1. The
requirement to be met is that the impedance spectrum is
determined from current i(t) and voltage v(t) measurements.
Therefore, the derived equations can be applied not only
to electrochemical, bioengineering and medical/physiological
applications where the impedance spectrum is measured but
also in other engineering fields, i.e. mechanical applications,
where the system’s frequency response is of interest.

Four different periodic broadband excitations have been
described as suitable for being used in broadband EIS
measurements. Their time and frequency properties have been
analyzed in terms of measurement accuracy in the time domain
based on the CF and in the frequency domain based on the
impedance spectrum SNRZ . Unless it is strictly mandatory to
obtain the full impedance spectrum, the frequency behavior
of maximum length binary sequences (MLBS) and chirp is
a disadvantage when accurate impedance data are required.
Considering that in most of the EIS applications only a discrete
set of frequencies is needed in order to fit the impedance
data to a model, discrete interval binary sequences (DIBS)
and multisines obtain more accurate impedance spectra. Using
multisine or DIBS signals improves the impedance SNRZ by
about 20–30 dB compared to the MLBS or chirp excitations.
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Appendix. Multisine crest factor

Consider a real multisine u(t) defined as (14). By definition,
the energy E of a periodic [−T0/2, T0/2] multisine signal can
be found by solving

E =
∫ −T0/2

−T0/2

∣∣∣∣∣
N−1∑
n=0

an cos (2π fnt + ϕn)

∣∣∣∣∣
2

dt. (A.1)

Once the quadratic term is expanded, the new equation to solve
is

E =
∫ T0/2

−T0/2

N−1∑
k=0

N−1∑
m=0

amak cos (2π f0t + ϕm) cos (2π f0t + ϕk) dt.

(A.2)

Rearranging the terms and using simple trigonometric
relationships, (A.2) turns into

E =
∫ T0/2

−T0/2

N−1∑
k=0

N−1∑
m=0

amak

×cos (2 · 2π f0t + ϕm + ϕk) + cos (ϕm − ϕk)

2
dt (A.3)

which can be simplified as follows:

E = 2
∫ T0/2

0

N−1∑
k=0

a2
m

cos (2 · 2π f0t + 2 · ϕm) + 1

2
dt. (A.4)

Next, the summation operator can be moved out of the integral
operator:

E =
N−1∑
m=0

a2
m

∫ T0/2

0
(cos (2 · 2π f0t + 2 · ϕm) + 1) dt (A.5)

and solved as

E =
N−1∑
m=0

a2
m

∣∣∣∣t + sin (2 · 2π f0t + 2 · ϕm)

2 · 2π f0

∣∣∣∣
T0/2

0

. (A.6)

In the following, (A.6) is evaluated at the initial and ending
points, namely

Eu(t) =
N−1∑
m=0

a2
m

(
T0

2
+ sin (2π + 2ϕm) − sin (2ϕm)

2 · 2π f0

)
. (A.7)

Equation (A.7) can be further simplified taking advantage of
the sin function 2π periodicity, as follows:

E =
N−1∑
m=0

a2
m

(
T0

2
+ sin (2ϕm) − sin (2ϕm)

2 · 2π f0

)
(A.8)

and the energy of a real multisine is obtained. The reader
should note that (A.9) only depends on the number of exciting
frequencies N and the norm of the multisine fundamental’s
amplitudes an, namely

E = T0

2

N−1∑
m=0

a2
m. (A.9)

Finally, (A.9) can be plugged into the denominator term in (8)
so that the crest factor is obtained, namely

CF (u (t)) =
√

2
max

t∈[0,T ]
|u (t)|√

N−1∑
m=0

a2
m

. (A.10)
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