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A Duplex Theory of Pitch Perception®
By J. C. R. LickLIDER?, Cambridge, Mass.



Theories of pitch perception have shared the pre-
supposition that pitch is a unitary attribute of auditory
experience. It is by no means entirely clear, however,
that such is the case. In some musical circles, in the
older psychological literature?, and in recent papers on
absolute pitch4, pitch is held to be duplex in nature.
Two pitch-like qualities are distinguished. They are
given various pairs of names by various authors: tone
height and tone chroma, ordinary pitch and chroma,
pitch and quality, pitch and tonality, etc. If such a
distinction is warranted—and several considerations
suggest that it is—the part of auditory theory that
concerns the perception of pitch is in need of modifi-
cation.

The stimulus basis for pitch is also duplex: On the
one hand we have frequency, on the other hand,
periodicity. That frequency and period are reciprocally
related is not sufficient reason for throwing one away
and examining only the other, for with each one is
associated a method of analysis. Of the two methods,
one-—frequency analysis performed by an array of
band-pass filters—has been incorporated into auditory
theory. The cochlea is almost universally regarded as
being an extended wave filter that distributes oscil-
lations of different frequencies to different places. The
possibility that the other method, autocorrelational
analysis, plays a role in the auditory process has been
neglected, '

Autocorrelational analysis is an analysis, carried out
entirely within the time domain, that yields the same
information as the power spectrum which is obtained
through analysis in the frequency domain. WIENER’s
famous theorum® shows that the autocorrelation func-
tion and the power spectrum of a wave are a FOURIER
transform pair. The attractiveness of autocorrelational
analysis per se therefore lies not in revealing anything
that cannot be found through frequency analysis; it
lies in the fact that the operations involved in carrying
out the autocorrelational analysis are quite different
from those involved in making the frequency analysis.

1 The preparation of this paper was supported by a contract
between Massachusetts Institute of Technology and the Air Foree
Research Laboratories, Cambridge, Mass.

2 Acoustics Laboratory, Massachusetts Institute of Technology
Cambridge, Massachusetts.

3 G. REvEsz, Zur Grundlegung der Tonpsychologie (Viet & Co.,
Leipzig 1913). — Max F. Mever, Psychol. Bull. 71, 319 (1u11).

4 A. Bacuen, J. Acoust. Soc. Amer. 9, 146 (1937).

% The suggestion has been made by R. M. Faxo of the Rescarch
Laboratory of Electronics and by I. A. e Rosa of the Federal
Telecommunication Laboratories, Inc., that the cochlea may operate
more nearly as an autocorrelator than as a filter. This suggestion is
quite different from, and in fact quite contrary to the hypothesis
proposed in the present paper.

8 N. \WIENER, Actzaugth. 55, 117 (1930).

The essence of the duplex theory of pitch perception
is that the auditory system employs both frequency
analysis and autocorrelational analysis. The frequency
analysis is performed by the cochlea, the autocor-
relational analysis by the neural part of the system.
The latter is therefore an analysis not of the acoustic
stimulus itself but of the trains of nerve impulses into
which the action of the cochlea transforms the stimulus.
This point is important because the highly nonlinear
process of neural excitation intervenes between the two
analyses.

The neural mechanism of analysis

In so far as the frequency analysis is concerned, the
duplex theory follows the resonance-place theory of
HeLmHOLTZ! and the space-time pattern theory of
FLETCHER®2 If we designate the lengthwise dimension
of the uncoiled cochlea as the x-dimension, we can
describe the cochlear frequency analysis by saying that
the cochlea transforms the stimulus time function f(¢)
into a running spectrum F(¢, x), position x being the
neural correlate of stimulus frequency. Thus the
cochlea does, in a rather different way and perhaps
with less resolution in frequency, essentially the same
thing as the Sound Spectrograph developed by the Bell
Telephone Laboratories3. The running spectrum, a
spatial array of time functions, is transmitted brain-
ward by neurons of the auditory nerve. Neurons termin-
ating at x, near the base of the cochlea act as a group
to carry F(¢, x,), while those terminating at x, near
the apex carry F(¢, x,), and the others in between
handle other parts. Each F(¢, x,) is an integral over
the behaviors of many neurons. The contribution of
an individual neuron, say tha jth neuron in group 7,
is N;(¢), a function that has either the value 0 (quies-
cent) or 1 (firing).

It will facilitate the description of the autocorre-
lational analysis if we think of it, at first, as being per-
formed upon the individual functions N4(¢f). The run-
ning autocorrelation function of Ny(¢) is defined* (see
appendix) as '

! H. vox HewLsnovtz, Sensations of tone (English translation by
A. J. Evvs, London, 1895, of Die Lehre von den Tonempfindungen,
2nd English ed., Longmans, Green, & Co., London, 1885).

2 H. FLETCuER, J. Acoust. Soc. Amer. 7, 311 (1930).

3 J.C.SteinserRG and N. R. FRencn, J. Acoust. Soc. Amer. 9,
146 (1946); and a series of articles by members of the Bell Telephone
Laboratories in the same issue. Also R. K, PotTER, G. A. Kopp, and
Harrier C. GREEN, Visible speech (D. Van Nostrand Co., Inc., New
York, 1947).

4 R. M. Fano, J.Acoust. Soc. Amer. (in press). Also K.N.
STEVENS, J. Acoust. Soc. Amer. (in press). These papers are, respec-
tively, on the mathematical relations between running autocorrelation
functions and power spectra and on autocorrelation functions of
specch sounds. ’



[15. IV, 1951)

@ult. 1) = Ny() Ny (¢ — ) (1

in which r is the variable interval by which N ;{8 is
delayed to produce N (¢ — 1) and the overline de-
signates a running integral over the more or less recent
past of ¢ Therefore ¢,;(t,7) is simply a running
accumulation of recent values of the product of N;(f)
and the same function delayed by 7. It provides a
progressive description of the periodicity of the dis-
charges of neuron 7.

The nervous system is nicely set up to perform
running autocorrelational analysis. The operations
specified by expression (1) are to delay the input func-
tion N,;{(f) by a variable interval 7, to multiply the
delayed function N,; (¢ — t) by the original function
Ny(2), and to determine the running integral ¢;(¢, 1)
of the product. A chain of neurons makes an excellent
delay line. The spatial aspect of synaptic summation
provides approximate multiplication. And the temporal
aspect of synaptic summation gives us running in-
tegration. The theory postulates, therefore, that the
lower centers of the auditory system perform the three

operations.
7 —
Dul Dzl D:l Dal Dsl asl-
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Fig. 1. — Basic schema of neuronal autocorrelator. A is the input
neuron, By, By, By, ... is a delay chain. The original signal and the

delayed signal are multiplied when 4 and Bj, feed C;, and a running
integral of the product is obtained at the synapse betwcen €, and
D;., where excitation accumulates whenever €. discharges and dis-
sipates itself at a rate proportional to the amount accumulated.
Since these operations correspond to the definition of running auto-
correlation, the excitatory states at Dy, D,, Dy, ... provide a display
of the running autocorrelation function of the input time function,
the temporal course of the discharges of 4.

The basic neuronal connections are shown in Fig. 1.
The state of neuron A4 is N 4(¢). If each synaptic delay
in the chain B is Az, the chain gives us N4(!) under
various delays. The state of neuron B,, for example,
is N4 (t — kAr). Assuming, with McCuLrocH and
Pitts!, that both A and B, must firc almost simultane-
ously to make C, fire, we have

Ncy (8) = N4(&) N4 (¢ — kd7). 2

Neuron C, impinges upon neuron D,. Excitation is
built up at D, by the discharges of C, and dissipates
itself spontaneously, perhaps at a rate proportional to
the amount accumulated. The excitation at D, at a
particular instant ¢ is therefore .

1 W, S. McCurroct and W. Perrs, Bull. Math. Biophys. 5, 115
(1943).
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Eny(t) = Ney (0. 3
Substituting in (3) the value of Nc, (¢) from (2), we

obtain

“)

Since expression (4) is equivalent to the definition (1)
in every respect save for the substitution of k4t for 7,
E(t, kA7) is an approximation of the running autocor-
relation function of N 4(f). Viewing the arrangement
of Fig.1 as a neuronal autocorrelator, we therefore
identify the lengthwise dimension of the delay chain
with 7, and we regard the time-varying excitation at
D,, D,, .., D,., as a spatial display of successive
cross-sections of the autocorrelation functionl.

We must now take into account the facts that
sensory systems have many neurons roughly in parallel
and that the important physiological quantities appear
to be averages or integrals over sets of neurons. We
therefore think of neuron 4 as but one of many neigh-
bors; it is, let us say, the jth neuron in the sth group
terminating along the basilar membrane of the cochlea.
It is the behavior F(¢, x,) of the group, not N;(#) =: N 4(¢)
of the individual neuron, that is subjected to auto-
correlational analysis. The arrangement of Fig. 1 must
be modified by introducing many neurons in parallel
with 4. Each has its own delay chain, but the outputs
of several delay chains are fed to C,, C,, .., Cy..
Finally, many sets like C,, C,, .., C,. impinge upon
D,, D,, .., D,.. We substitute for the assumption that
both 4 and B; must discharge to fire C, the more
plausible assumption that the accumulation of ex-
citation at C, must reach a certain level, which may
vary secularly. Other neurons in parallel with C; have
other thresholds. These are distributed in such a way
that the behavior of the group of neurons in parallel
with C, is related nonlinearly to the inpuf, which is
approximately F(¢, x,) plus F (¢ — kAr, x;). The non-
linearity gives rise to an output that is a rough ap-
proximation of the arithmetic product of the two
components of the input.

In order to obtain the running integral of the prod-
uct, we follow in principle the description given in the
preceding paragraphs. However, as soon as we sub-
stitute groups of neurons for individuals, we may
redefine the output of the neuronal autocorrelator in
terms of the actual behavior of groups of neurons,
which is more directly observable than the excitatory
state defined as the output in expression (4). To do
this, we need only assume that the behavior of the

Epi(t) = E{t, kA7) = NL() N4 (¢ — kdv).

1 For the sake of simplicity, we assume here that delay in time is
proportional to distance traversed in the neural tissue. If the tissue
should prove to be non-homogeneous, we should designate the length-
wise dimension of the delay chain as y = y(r). This would parallel
our procedure in handling frequency, which is not transformed
linearly into the y-dimension: we labeled the spatial dimension
¥ = x{m) instead of o itself.
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group of neurons in parallel with D, is roughly propor-
tional to Ep,. As soon as we take that step, however,
we see that the chain of neurons D,, D,, .., D;. (in-
troduced in the first place only to facilitate the descrip-
tion by separating the operations) can be eliminated.
We can give the synapses at C,, C,, .., C,.. responsibil-
ity for both multiplication and integration. The former
depends upon the nonlinearity of the synaptic relay,
the latter upon its sluggishness. Let us therefore amend
the notation and call the behavior of the group of
C-neurons (i.e. the output of the system) g, 7).

We have thus far an arrangement of neurons that
determines approximately the running autocorrelation
function of F(t, x,). The arrangement has a simple net-
work of neurons as its basic schema. However, it is
not in essence a digital machine. Since the basic
operations involve integrations over sets of neurons,
the discontinuity of the discharges of the individual
neurons is smoothed over and does not appear in
¢(t, 7). For the same reason, exact replication of the
neuronal arrangement shown in Fig. 1 is not required.
In fact, a certain amount of statistical variation of
microstructure is quite as desirable for the functioning
of the mechanism as it is bound to occur in neural
tissue,

Bringing together the cochlear frequency analysis
and the neuronal autocorrelation, we note that our
discussion of the latter has given us the autocorrelation
function of a single channel of the cochlear output. The
cochlear frequency analysis transforms f(f) into F (¢, x),
of which F{¢, x,) is but one part, separated spatially
from the others. Our ¢(¢, T) describes only the signal

Cochlea

Fig. 2. — Schematic diagram of overall analyzer. At the bottom is the
uncoiled cochlea. Its lengthwise dimension and the corresponding
dimension in the neural tissue above it is designated the x-dimension.
The cochlea performs a crude frequency analysis of the stimulus
time function, distributing different frequency bands to different
x-positions. In the process of exciting the ncurons of the auditory
nerve, the outputs of the cochlear filters are rectified and smoothed.
The resulting signals arc carried by the groups of neurons .1 to the
autocorrelators B, whose delay- or T-dimension is orthogonal to x.
The outputs of the autocorrelators are fed to higher centers over the
matrix of channels C, a cross-section through which is called the
(x, T)-plane. (Output arrows arise from all the dots; some are omitted
in the diagram to avoid confusion.) Thé time-varying distribution of
activity in the (x, T)-plane provides a progressive analysis of the
acoustic stimulus, first in frequency and then in periodicity.
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in the ith channel; it is ¢{t, 7, x;). We must think of
the neural arrangement, therefore, as extended in two
spatial dimensions. The one corresponding to frequency
is the x-dimension, or the dimension of the nervous
tissue into which the lengthwise dimension of the
cochlea projects. The whole arrangement for determin-
ing autocorrelation functions is replicated in the x-
dimension. The r-dimension is functionally orthogonal
to the x-dimension, and we can think of it, at least for
convenience of graphical representation, as being spa-
tially orthogonal, also. The over-all system, then, yields
a representation of the stimulus f{¢) in two spatial di-
mensions and time, a running autocorrelation @(¢,7, x)
of the components in each of many frequency bands.
The arrangement is shown schematically in Fig. 2.

Relations between theory and observation

The duplex theory accounts immediately for two
observations that cause ordinary place theories great
difficulty. These are the observations of MILLER and
TavLOR! on the pitch of interrupted white noise and
of SCHOUTEN? on the residue phenomenon, MILLER and
TavLor found that their listeners could match with
an oscillator tone the pitch of random fluctuation noise
that was chopped into segments (on half the time, off
half the time) at rates between about 40 and 250 per
second. According to the duplex theory, both the tone
and the interrupted noise produce activity in the same
stria of the (x, 7)-plane. The distributions of activity
set up bya 100-c.p.s. sinusoid and white noise interrupted
100 times per second are shown schematically in Fig. 3,
A and B (see Fig. 3).

The basis for the pitch match is evident.

The acoustic stimulus that gives rise to SCHOUTEN's
effect consists of the high-frequency harmonics of a
frequency in the interval 30 to 300 c.p.s. SCHOUTEN'S
listeners reported that the high-frequency sound had
about the same pitch as a (low-frequency) sinusoid of
the same fundamental period. Repeating SCHOUTEN's
work with a spectrum consisting of linesat 4,000, 4,100,
4,200, ..., RosenBLITH? found that many of his listeners
made the same judgment: they matched the high-
frequency sound in pitch with a sinusoid of about
100 c.p.s. However, some insisted that the pitch of the
sound was quite high4. The distribution of activity in
the (x, r)-plane, shown in Fig. 3C, shows that both
reports are reasonable. There is simply a disagreement
among the listeners about which of the attributes—the
one based on periodicity in t or the one based on
position in x—is meant by “‘pitch”.

1 G.A. MiLLer and W. G. TAYLOR,
171 (1948).

2 J. F. ScuouteN, Philips Tech. Rev. §, 226 (1940).

3 \W. A. RosenBLITH, Progress Report 11 (PNM-6) of the Psycho-
Acoustic Laboratory, Harvard University (1947).

4 A similar division of judgment of pitch was reported by H. Davis
at the June, 1930, mceting of the Acoustical Society of America.

Davis' acoustic stimulus was a carrier of about 2000 c.p.s. modulated
at 123 c.p.s.

J. Acoust. Soc. Amer. 20
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Fig. 3. ~ Schematic illustrations of duplex analysis. A represeats the
analysis of a 100-c.p.s. sinusoid, B of white noise interrupted 100
times per second, C of a sct of high-frequency harmonics of 100 c.p.s.,
and D of a 200-c.p.s. sinusoid. At the left in each plot are shown the
stimulus waveform /(f), the waveform I°(¢, x;) of the signal carried by
the first-order neurons (acting as a group) at x;, and the autocor-
relation function g(t, %;) of F(t, x;). At the top of cach plot is the
distribution of activity along the length of the cochlea: A(x, f} is the
root-mean-square of the instantaneous amplitudes of oscillation
A(x,t) at various positions along the cochlear partition!3. F(¢, x,
results from the rectification and smoothing of A(x,¢). The density
of stippling in the rectangle represents ¢(7, x), the autocorrelation
functions of the signals in the various z-channels. (Since the signals
are in steady state, the ¢-dimension is omitted here.) Note that the
first three (#, 7)-plots are similar in the - but not in the x-dimension.
This corresponds to the fact that they are subjectively similar in
one pitch-like attribute but not in another. D is somewhat similar
to .4 in the t-dimension: the odd-numbered maxima of @, x) in
D coincide with the maxima in 4. This corresponds to the subjective
-uniqueness of the octave relation.

T‘W tovnVark v 2-YH namc
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The octave relation, the musical third, fourth, and
other consonant intervals are understandable on es-
sentially the same basis. When the frequencies of two
sounds, either sinusoidal or complex, bear to each other
the ratio of two small integers, their autocorrelation
functions have common peaks. The 200-c.p.s. sinusoid
in Fig. 3D gives rise to maximal activity wherever the
100 c.p.s. sinusoid of Fig.3 A4 does, and also in the strips
that are half-way between. Furthermore, making use
of the phenomenon illustrated in Fig.3C, we note
that the fundamental components of complex sounds
need not be energetically present in the acoustic
stimulus. The non-linearity of the neural excitation
process introduces a component at the fundamental fre-
quency before the autocorrelationalanalysis occurs. This
fact explains the ““case of the missing fundamental’’1,

The duplex theory also accounts for the subjective
difference between the difference tone, heard when two
moderately strong primary tones are presented to the
ear, and a sinusoid of the difference frequency. It may
account for the distinction between the two pitch-like
attributes made by the listeners with “‘absolute pitch”
who place a tone in the right region of the scale on the
basis of ordinary pitch and then fix the note precisely
with the aid of chroma. And it may account for some
of the differences that have been noted between low-
frequency and high-frequency hearing. The autocor-
relational analysis must operate only for frequencies
(frequencies of modulation or frequencies energetically
present in the stimulus) that can be represented by
volleys in the first-order neurons. Although there is
evidence? that the volley principle operates up to 3,000
or 4,000 c.p.s., the effect at those frequencies is very
weak, and it is safer to restrict the autocorrelational
analysis to 1,000 c.p.s. or less. (It is unlikely that
synapses provide delays of less than a millisecond,
though of course axonal delays of almost any smaller
duration may be postulated.)

A final comment concerns the plausibility of the
autocorrelational schema from the neurological point
of view. One of the essential features of the schema is
division of the input into two channels, one with and
one without built-in delay. In his histological investiga-
tion of the cochlear nucleus, LORENTE DE N63 found
that the first-order auditory fibers branch, one division
taking a one-synapse route to the next relay station,
the other passing into a region of dense ramifications
and thicket-like synaptic connections. Furthermore,
recent work of GALAMBOS, ROSENBLITH, and ROSEN-
ZWEIG* shows that it is entirely reasonable to postulate

! S.8.Stevens and H. Davis, Hearing, ils psychology and physio-
logy (John Wiley and Sons, Inc., New York, 1938). - J. F. SciioUTEN,
Proc. K. Ned. Akad. Wet. 43, 356 (1940). )

2 E. G. WEVER, Theories of hearing ( John Wiley and Sons, Inc.,
New York, 1949).

3 R. LoreNTE DE N6, Laryngoscope 43, 1 {1933).

4 R. GaLamBos, W. A. Rosexsriti, and M. R. ROSENZWEIG,
Periodic Status Report 1X (PNM-18) of the Psycho-Acoustic
Laboratory, Harvard University (1049).
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for the cochlear nucleus the delay of 1/30 sec. that is
required if the autocorrelator is to operate as low as
30 cps. These considerations, together with the fact
that the autocorrelator should be as near the cochlea
as possible so that it may operate upon the signal
before temporal resolution is lost, suggest that the
cochlear nucleus may be the site. It is perhaps best,
however, not to commit the theory at the present time
to a definite statement about the location of the
mechanism.

APPENDIX

Awutocorrelation

The running autocorrelation function defined roughly
by expression (1) in the text is a generalization of the
function known to mathematicians! as the unnormal-
ized autocorrelation function

#la

o@= = [ 10
—ufs

(1) is the average over all time of the product of the
original time function f(¢{) and the same function ad-
vanced by 7. The generalization is achieved by relaxing
the requirement, which of course cannot be met in
practice, that the average extend over all time. In
general, we know nothing about the futures of the
messages we receive. Certainly, the auditory system
operates only upon the present and the not-extremely-
far-distant past of the acoustic stimulus. We therefore
take a running average (or, what amounts to the same
thing, a running integral) instead of the average over
all time. We also reverse the sign of the t, so that we
delay the signal instead of advancing it. This, again,
avoids operating upon the future. The reversal of sign
makes no difference to @(t) because, as defined in (5),
it is an even function, symmetrical about 7 == 0. How-
ever, the substitution of the running integral for the
all-time average requires explication.

As shown in Fig. 4, the first two operations in the
determination of the running autocorrelation may be
thought of as the same (except for the reversal of the
sign of 1) as the first two operations in the determin-
ation of the function defined in (5). The function to be
analyzed, f(¢), is shown as the heavy line in A. The first
step is to delay /f(f) by a variable interval 7. In the
figure, delaying /() by 7, (i.e. by one particular value
of the variable 1) yields f (¢ — 1,), which is shown as
a dashed line. The second step is to multiply the original
function by the delayed function. The product I1{¢, ;)
= f(t) f (¢ — 1) is shown in B. We should of course
have a set of such product functions, one for each
value of the variable 7, instead of the single one shown
in the figure.

fe+7)a (5)

1 N.WIENER, Extrapolation, interpolation, and smoothing of station-
ary time series (John Wiley and Sons, Inc., New York, 1949).
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Fig. 4. — Steps in the determination of the running aulocorrelation func-
tion. 4 shows the original function f(f) and the delayed function
f (¢ — 1 ). Their product is shown in B. In C, the instant ¢ is taken
as the present, and the product is re-expressed as a function of T,
the distance into the past of #;,. The weighting function W(T) de-
termines the strength of the contribution of each past ordinate of the
product to the autocorrelation coefficient. In order to let time ¢ flow
from left to right, the scale of T is oriented in the reverse direction
as indicated by the arrows in C and D. The curve of D is the weighted
product. It is integrated, the solid areas being considered positive
and the cross-hatched areas negative, and the integral is plotted
above ¢ in E. Letting the present flow along in time and repeating
the process for other values of time than {,, we obtain the dashed
curve in E. And, finally, we replicate the whole analysis for other
values of the delay than ;. This generates the surface @(t, T) shown
in F. The surface is the running autocorrelation function.
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Thus far, we have proceeded as instructed by (5),
but as we take the third step, we depart from it,
substituting running integration for the average over
all time. The running integral is the convolution of
IT{t, v;) and a weighting function that specifies how
strongly each past value of the product contributes to

the accumulation at the present instant f,. As in C, ~

therefore, we rewrite the product as a function, not of ¢,
but of distance T into the past of ¢,. The choice of the
weighting function W(T) is to a considerable extent
arbitrary: we might define any number of running
autocorrelation functions, one for each possible W(T).
For the purpose of the duplex theory, a declining ex-
ponential with a time constant of 2 or 3 milliseconds is
a reasonable choice. [W(T) need not be defined for
negative values of 7.] The autocorrelation coefficient
@(f, ;) is then the integral of the weighted product
over the entire past of ¢, but the distant past receives
so little weight that it is effectively ignored. The result
of weighting the product is shown in D. The integral
of the weighted product is shown by the dot above ¢,
in E.

The procedure illustrated in 4 through E of Fig. 4
must of course be repeated for other values of ¢ and 7.
Repeating it for all ¢ yields the function @(4, 7;) repre-
sented by the dashed line in E and shown again as a
contour in F. Then repeating it for other values of 7
generates the surface

ot 7) =({/ ¢t—T)f(t—7— T)W(T)dT. (6)

This is the running autocorrelation function for which
expression (1) is a short-hand definition. The overline
in (1) specifies that the operation

o0
[1
0
is applied to the product f(f) f (¢ — 7) after £ — T has
been substituted for £.
Interpretation of the autocorrelation function is
often facilitated, especially in cases in which we either

naturally or through force of habit think in terms of
frequency, by use of the WIENER theorem:

1 W(T) dT )

D (w)= 217! ‘_/. @(z) cos wr dr
o (8)
or) = f P (w) cos wr dw

Expression (8) tells us, for example, that the auto-
correlation function of any sinusoid is a cosine func-
tion, the period in T being the same as the period in ¢.
Taking advantage of the fact that, if signals are super-
posed, the autocorrelation function of the sum may be
found by superposing the autocorrelation functions of
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the individual signals, we can obtain the autocor-
relation function of any signal that has a line spectrum
by superposing cosine functions. Other aids to intuition
are useful if the signal to be analyzed has a continuous
spectrum. It is by no means necessary, however, to
make the mental detour through the frequency domain.
Some signals lend themselves more naturally to auto-
correlational than to spectral analysis. The easiest way
to find the spectra of telegraph and teletype messages,
for example, is to determine the autocorrelation func-
tion first and then to take its Fourier transform.

The foregoing comments about the relation between
the autocorrelation function and the power spectrum
refer to (z) and @ (w), bothof which involveintegration
over all time. Fortunately, analogous statements can
be made about the running autocorrelation function,
defined in (6), and the running power spectrum,
measured with band-pass filters. Fano! has shown
that, if the weighting function W(T) in (6) is a declin-
ing exponential, and if the filters employ certain simple
arrangements of resistances, capacitances, and induct-
ances, the FOURIER transform relation extends to the
running autocorrelation function and the running
power density spectrum,

A final comment concerns the distinction between
normalized and unnormalized autocorrelation func-
tions. Often, the distinction is not made explicit. In
communication éngineering, the function defined in
expression (5) is usually called “‘the autocorrelation
function” without qualification. The signal f(f} may
have any average power; it may include a d-c com-
ponent. ‘“‘Autocorrelations‘ greater than unity may
therefore arise. In other fields, especially those in
which “correlation” means PEARSON product-moment
correlation, it is natural to normalize f(f} before oper-
ating upon it. The normalization eliminates the d-c
component (sets the mean at 0) and adjusts the average
power to unity (sets the variance at 1). The magnitude
of the coefficient of autocorrelation is restricted to the
interval —1 < ¢ < 1 by the normalization. For the
autocorrelation function based on the average over all
time [expression (5)], the normalization changes only
the zero point and the scale factor; it leaves the shape
unaltered. For the running autocorrelation function
[expression (6)], however, the distinction is fundament-
al. In Fig. 4F, for example, the contour (¢, 0) would
be a straight line at ¢ = 1 if the function were normal-
ized. As the figure stands, unnormalized, @{¢, 0) is the
running average power (or squared amplitude) of f(¢).

Zusammenfassung

Es wird eine neue Theorie der Tonhohenempfindung
beschrieben. Diese hatunter anderem die Aufgabe, Beob-
achtungen zu erkliren, 1n welchen die Tonhohe (pitch)
als cine zweifache Eigenschaft (duplex attribute) der
Gehorsempfindung erscheint. In den meisten fritheren

U R.M. Faxo, op. dit.
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Theorien wurde die Tonh&6he als einfache und einheitliche
Eigenschaft betrachtet. Die Theorie setzt voraus, dal
das Gehororgan eine Doppelanalyse, und zwar eine
Frequenzanalyse und eine Autokorrelationsanalyse vor-
nimmt. Wir kénnen uns vorstellen, daB diese Analysen
in der folgenden Weise vor sich gehen:

Die Schnecke wirkt wie eine Anzahl von breiten Band-
filtern, die den Reiz auf viele Frequenzbdnder verteilen.
Diese Binder sind rdumlich voneinander getrennt, sie
liegen einer einzigen Dimension entlang, ndmlich der
xz-Dimension des Nervengewebes. In jedem Frequenz-
band wird der Ton einer weiteren Analyse unterzogen,
und zwar durch eine Gruppe von Neuronen, die als ein
Autokorrelator wirken. Dieser Autoknrrelator analysiert
in einer zweiten riumlichen Dimension, der r-Dimension.

J. C. R. LickLiDer: A Duplex Theory of Pitch Perception

[EXPERIENTIA VoL.VII/4]

Die Theorie erklirt gewisse psychophysische Beobach-
tungen, welche sich durch gewohnliche Ortstheorien(Ein-
ortstheorien) nicht leicht erkliren lassen. ROSENBLITH
berichtet zum Beispiel, daB eine Impulsfolge, die nur aus
den hochfrequenten Oberténen von 100 Hertz besteht,
zwei «tonale» Qualitdten hat: die eine ist hoch, die andere
tief. Diese Zweiartigkeit der Tonhéhenempfindung kann
in der folgenden Weise aufgefaBt werden: Die eine Quali-
tit ist verkniipft mit der Energiekonzentration in einem
besonderen Frequenzband oder, vom Gesichtspunkt der
Nervendimensionen aus gesehen, mit einem Aktivitits-
ort entlang der x-Dimension. Die andere Qualitit ist
mit der Reizperiodizitit verkniipft und daher in dieser
Theorie mit Aktivitit in einem oder in mehreren Punk-
ten entlang der r-Dimension.





