

Surface Mount PIN Diodes in SOT-323 (SC-70 3-Lead)

Technical Data

HSMP-381B/C/E/F HSMP-386B/C/E/F HSMP-389B/C/E/F HSMP-481B, -482B, -489B

Features

- Diodes Optimized for: Low Current Switching Low Distortion Attenuating Ultra-Low Distortion Switching Microwave Frequency Operation
- Surface Mount SOT-323 (SC-70)Package

Single and Pair Versions Tape and Reel Options Available

• Low Failure in Time (FIT) Rate*

* For more information see the Surface Mount PIN Reliability Data Sheet.

Package Lead Code Identification (Top View)

Description/Applications

The HSMP-381B/C/E/F series is specifically designed for low distortion attenuator applications. The HSMP-386B/C/E/F series is a general purpose PIN diode designed for low current attenuators and low cost switches. The HSMP-389B/C/E/F series is optimized for switching applications where low resistance at low current, and low capacitance are required.

The HSMP-48XB series is special products featuring ultra low parasitic inductance in the SOT-323 package, specifically designed for use at frequencies which are much higher than the upper limit for conventional SOT-323 PIN diodes. The HSMP-481B diode is a low distortion attenuating PIN designed for operation to 3 GHz. The HSMP-482B diode is ideal for limiting and low inductance switching applications up to 1.5 GHz. The HSMP-489B is optimized for low current switching applications up to 3 GHz.

Absolute Maximum Ratings^[1], $T_c = +25^{\circ}C$

Symbol	Parameter	Unit	Absolute Maximum
I _f	Forward Current (1 µs Pulse)	Amp	1
P _{iv}	Peak Inverse Voltage	V	Same as V _{BR}
T _J	Junction Temperature	°C	150
T _{STG}	Storage Temperature	°C	-65 to 150
θ_{jc}	Thermal Resistance ^[2]	°C/W	300

Notes:

- 1. Operation in excess of any one of these conditions may result in permanent damage to the device.
- 2. $T_C = 25^{\circ}C$, where T_C is defined to be the temperature at the package pins where contact is made to the circuit board.