TRACE ELLIOT # **SERVICE MANUAL** **DATE :** December 29, 1999 **Product Code:** N/A **Model Number:** Series 6 GP7- combos/head Issued by: Trace Elliot Limited Blackwater Trading Estate The Causeway Maldon Essex England CM4 4GG DA4 HO:- AH200 3ATE 6-2-89 DRAWA C BUTTON ## **GP7 MAIN BOARD - COMPONENT PARTS LIST** | REF | PART NUMBER | | VALUE | | REF | PART NUMBER | | VALUE | | |------------|--------------------------|-------------|--------------|----|-----------|--------------------------|-------------|-------|----| | R1 | 1610-RM10K | 10K | 1/4W | MF | R61 | 1610-RM33K | 33K | 1/4W | MF | | R2 | 1610-RM10K | 10K | 1/4W | MF | R62 | 1610-RM22K | 22K | 1/4W | MF | | R3 | 1610-RM220K | 220K | 1/4W | MF | R63 | 1610-RM1K | 1K | 1/4W | MF | | R4 | 1610-RM1M | 1M | 1/4W | MF | R64 | 1610-RM10K | 10K | 1/4W | MF | | R5 | 1610-RM560R | 560R | 1/4W | MF | R65 | 1610-RM1K | 1K | 1/4W | MF | | R6 | 1610-RM100K | 100K | 1/4W | MF | R66 | 1610-RM100K | 100K | 1/4W | MF | | R7 | 1610-RM27K | 27K | 1/4W | MF | R67 | 1610-RM470K | 470K | 1/4W | MF | | R8 | 1610-RM1K5 | 1K5 | 1/4W | MF | R68 | 1610-RM100K | 100K | 1/4W | MF | | R9 | 1610-RM6K8 | 6K8 | 1/4W | MF | R69 | 1610-RM100K | 100K | 1/4W | MF | | R10 | 1610-RM6K8 | 6K8 | 1/4W | MF | R70 | 1610-RM560R | 560R | 1/4W | MF | | RII | 1610-RM6K8 | 6K8 | 1/4W | MF | R71 | 1610-RM4K7 | 4K7 | 1/4W | MF | | R12 | 1610-RM33K | 33K | 1/4W | MF | R72 | 1610-RM6K8 | 6K8 | 1/4W | MF | | R13 | 1610-RM10K | 10K | 1/4W | MF | R73 | 1610-RM220R | 220R | 4W | ww | | R14 | 1610-RM33K | 33K | 1/4W | MF | R74 | 1610-RM47K | 47K | 1/4W | MF | | R15 | 1610-RM2K2 | 2K2 | 1/4W | MF | | , o , o , t. t. t. t. t. | | ., | | | R16 | 1610-RM33K | 33K | 1/4W | MF | Cl | 1610-CO.47-35VT | 0.47uF | 35v | T | | R17 | 1610-RM47K | 47K | 1/4W | MF | C2 | 1610-01-35VT | lu5 | 35v | T | | R18 | 1610-RM22K | 22K | 1/4W | MF | C3 | 1610-CIN-100VE | 1nF | 50v | M | | R19 | 1610-RM47K | 47K | 1/4W | MF | C4 | 1610-C10-35VER | 10uF | 35v | RE | | R20 | 1610-RM22K | 22K | 1/4W | MF | C5 | 1610-C220-35VER | 220uF | 35v | RE | | R21 | 1610-RM10K | 10K | 1/4W | MF | C6 | 1610-C100N-100VE | 100nF | 50v | M | | R22 | 1610-RM22K | 22K | 1/4W | MF | C7 | 1610-C10-100VE | 10nF | 50v | М | | R23 | 1610-RM6K8 | 6K8 | 1/4W | MF | C8 | 1610-C10-100VE | 10nF | 50v | М | | R24 | 1610-RM6K8 | 6K8 | 1/4W | MF | C9 | 1610-C1-35VT | 1u5 | 35v | T | | R25 | 1610-RM6K8 | 6K8 | 1/4W | MF | C10 | 1610-CO.47-35VT | 0.47uF | 35v | T | | R26 | 1610-RM6K8 | 6K8 | 1/4W | MF | C11 | 1610-C220P-50VCD | 220pF | 50v | DC | | R27 | 1610-RM6K8 | 6K8 | 1/4W | MF | C12 | 1610-C1-35VT | luF | 35v | T | | R28 | 1610-RM6K8 | 6K8 | 1/4W | MF | C13 | 1610-CO.15-35VT | 0.15uF | 35v | T | | R29 | 1610-RM6K8 | 6K8 | 1/4W | MF | C14 | 1610-C220P-50VCD | 220pF | 50v | DC | | R30 | 1610-RM6K8 | 6K8 | 1/4W | MF | C15 | 1610-CO.68-35VT | 0.68uF | 35v | T | | R31 | 1610-RM6K8 | 6K8 | 1/4W | MF | C16 | 1610-C68N-50VE | 68nF | 50v | M | | R32 | 1610-RM6K8 | 6K8 | 1/4W | MF | C17 | 1610-C220P-50VCD | 220pF | 50v | DC | | R33 | 1610-RM6K8 | 6K8 | 1/4W | MF | C18 | 1610-CO.33-35VT | 0.33uF | 35v | T | | R34 | 1610-RM6K8 | 6K8 | 1/4W | MF | C19 | 1610-C33N-100VE | 33nF | 50v | M | | R35 | 1610-RM6K8 | 6K8 | 1/4W | MF | C20 | 1610-C220CP-50VCD | 220pF | 50v | DC | | R36 | 1610-RM6K8 | 6K8 | 1/4W | MF | C21 | 1610-CO.15-35VT | 0.15uF | 35v | T | | R37 | 1610-RM6K8 | 6K8 | 1/4W | MF | C22 | 1610-C15N-100VE | 15nF | 50v | М | | R38 | 1610-RM6K8 | 6K8 | 1/4W | MF | C23 | 1610-C22CP-50VCD | 220pF | 50v | DC | | R39 | 1610-RM6K8 | 6K8 | 1/4W | MF | C24 | 1610-C68N-50VE | 68nF | 50v | М | | R40 | 1610-RM6K8 | 6K8 | 1/4W | MF | C25 | 1610-C6N8-100VE | 6n8 | 50v | М | | R41 | 1610-RM15K | 15K | 1/4W | MF | C26 | 1610-C22CP-50VCD | 220pF | 50v | DC | | R42 | 1610-RM3K3 | 3K3 | 1/4W | MF | C27 | 1610-C33N-100VE | 33nF | 50v | М | | R43 | 1610-RM3K3 | 3K3 | 1/4W | MF | C28 | 1610-C4N7-100VE | 4n7 | 50v | М | | R44 | 1610-RM100K | 100K | 1/4W | MF | C29 | 1610-CIN-100VE | 1n5 | 50v | M | | R45 | 1610-RM470K | 470K | 1/4W | MF | C30 | 1610-C220-35VER | 220uF | 35v | RE | | R46 | 1610-RM22K | 22K | 1/4W | MF | C31 | 1610-C220-35VER | 220uF | 35v | RE | | R47 | 1610-RM33K | 33K | 1/4W | MF | C32 | 1610-C47P-50VCD | 47pF | 50v | DC | | R48 | 1610-RM470K | 470K | 1/4W | MF | C33 | 1610-C47P-50VCD | 47pF | 50v | DC | | R49 | 1610-RM470K | 470K | 1/4W | MF | C34 | 1610-C100N-100VE | 100nF | 50v | М | | R50 | 1610-RM470K | 470K | 1/4W | MF | C35 | 1610-CO.47-35VT | 0.47uF | 35v | T | | R51 | 1610-RM33K | 33K | 1/4W | MF | C36 | 1610-C100N-100VE | 100nF | 50v | М | | R52 | 1610-RM470K | 470K | 1/4W | MF | C37 | 1610-C100N-100VE | 100nF | 50v | М | | R53 | 1610-RM33K | 33K | 1/4W | MF | C38 | 1610-C100N-100VE | 100nF | 50v | М | | R54 | 1610-RM10K | 10K | 1/4W | MF | C39 | 1610-C100N-100VE | 100nF | 50v | M | | R55 | 1610-RM100K | 100K | 1/4W | MF | C40 | 1610-C1-35VT | luF | 35v | Ţ | | R56
R57 | 1610-RM4K7 | 4K7 | 1/4W | MF | C41 | 1610-C1-35VER | luF
1005 | 35v | RE | | R58 | 1610-RM22K
1610-RM6K8 | 22K | 1/4W | MF | C42 | 1610-C100P-50VCD | 100pF | 50v | DC | | R59 | 1610-RM100K | 6K8 | 1/4W | MF | C43 | 1610-C330P-50VCD | 330pF | 50v | DC | | R60 | 1610-RM22K | 100K
22K | 1/4W
1/4W | MF | C44 | 1610-C1-35VER | luF | 35v | RE | | K-C-C | IO IO-KIVIZZK | 225 | 1/477 | MF | C45 | 1610-C1-35VER | luF | 35v | RE | # PARTS LIST FOR PB200 POWER MODULES | Description | Part Code | Qty | Where Used | |----------------------|------------------|-----|------------| | RESISTORS | | | | | 100K 1/4 WATT | 72-RM100K | 1 | R8 | | 15K 1/4 WATT | 72-RM15K | 1 | R16 | | 220R 1/4 WATT | 72-RM220R | 8 | R9-15 R19 | | 4K7 ¼ WATT | 72-RM4K7 | 3 | R2 R3 R5 | | 560R ¼ WATT | 72-RM560R | 1 | R6 | | 56K ¼ WATT | 72-RM56K | 2 | R1 R7 | | 68K ¼ WATT | 72-RM68K | 1 | R4 | | 10R 2.5 WATT | 72-RWW10R-2.5W | 1 | R17 | | 1K 2W PLUGABLE | 72-RWW1K | 1 | R18 | | CAPACITORS | | | | | 0.22μF 250V POLY BOX | 72-C0.22-250VP | 1 | C11 | | 1.5μF 35V TANT | 72-C1.5-35VT | 1 | C1 | | 100nF 250V POLY BOX | 72-C100N-250VP | 1 | C8 | | 10nF 100V MYLAR | 72-C10N-100VE | 1 | C7 | | 220pF 100V CER DISC | 72-C220P-100VCD2 | 1 | C2 | | 47μF 63V RADIAL | 72-C47-63VER | 2 | C4 C12 | | 47pF 100V CER DISC | 72-C47P-100VCD | 3 | C3 C5 C6 | | 4700μF 80V RADIAL | 72-CAP-470080V | 2 | C9 C10 | | SEMI-CONDUCTORS | | | | | 12V ZENER DIODE | 72-D-BZX55C12V | 2 | ZD3 ZD4 | | 39V ZENER DIODE | 72-D-BZX55C39V | 2 | ZD1 ZD2 | | GI 751 DIODE | 72-D-GI751 | 4 | D6-9 | | IN4148 DIODE | 72-D-IN4148 | 5 | D1-5 | | BUZ900 MOSFET | 72-MOS-BUZ900 | 2 | | | BUZ905 MOSFET | 72-MOS-BUZ905 | 2 | | | BF422 TRANSISTOR | 72-TBF422 | 2 | TR4 TR5 | | BF423 TRANSISTOR | 72-TBF423 | 3 | TR1-3 | | OTHERS | | | | | ISOLATION BUSH | 72-MOS-BUSH-WHT | 8 | | | ISOLATION PAD | 72-MOS-KOOL-PAD | 4 | | | 220R PRESET POT | 72-PRESET-220R | 1 | P1 | | MAIN HEATSINK | 71-HS-L200 | 1 | | Rik Daniels April 3, 1997 **GP7/1** # **GP7 PREAMPLIFIER** The GP7 preamplifier is used in the following Trace Elliot Series 6 products: Amplifier Heads: AH100 Combo amplifiers: 715 Frequency Response Signal/Noise Ratio # **TECHNICAL SPECIFICATIONS** Inputs Passive Bass Impedance 100k Ohms Input Range 50mV to 10V (peak-peak) **Active Bass** Impedance 10k Ohms Input Range 100mV to 20V (peak-peak) Effects Return Impedance 50k Ohms Nominal Input Level OdBv (0.775v RMS) Line Input Impedance 50k Ohms Nominal Input Level 0dBv Outputs Effects Send Impedance 10k Ohms Nominal Level 0dBv Line Output Impedance 600 Ohms Nominal Level 0dBv Maximum Level +9dBv (7v RMS) Equalisation Graphic +/- 15dB at 7 centre frequencies Mid Pre Shape +6dB at 50 Hz and 2kHz, -6dB at 400 Hz Distortion Less than 0.05% THD -3dB at 22 Hz and 25kHz Better than 80dB (EQ flat, Mld out) #### SERVICE INFORMATION GP7/2 ## **GP7 CIRCUIT DESCRIPTION** #### INPUT J1/J2 J1 and J2 are the instrument inputs to the GP7. A signal entering J1 is passed to the first stage via R2 with R1 in parallel. A signal entering J2 is passed to the first stage via R1. This time however, R2 has one end connected to ground via the switched contact on J1. This provides a degree of attenuation to the "Active Bass" input J2, with the combination of R1 and R2 acting as a potential divider across the input. #### FIRST STAGE The first stage is made up of transistors TR1 and TR2. TR2 is an "emitter follower" stage to provide a low impedance output to feed the next stage (the Mid Pre Shape circuit). TR1 is the input gain/attenuation stage with its level controlled by the "input Gain" pot. Gain is achieved by moving the pot's wiper toward the input end feeding more signal direct to TR1's base and the attenuation by moving the wiper to the opposite end, providing negative feedback from the collector to the base of TR1. The supply to this first stage comes in via R8 and is decoupled with C4 to prevent any power supply noise from reaching this sensitive input circuit. C3 is to bypass any high frequency noise and prevent radio breakthrough, etc. #### MID PRE SHAPE The combination of C6, C7, C8 and C49, along with resistors R11, R12 and R14 form a "Band Reject" filter. This provides a "Mid Cut" to signals passing through it. The filter is buffered by one half of IC1. The "Mid Pre Shape" switch selects either the direct signal via R13 or the "Pre Shaped" signal via R15. These two resistors also set the gain of the following stage with a greater gain being provided by R15. R15's value has been chosen to provide the "Pre Shaped" sound with a "Top" and "Bottom" boost, as well as the "Mid" cut provided by the filter. ## THE GRAPHIC SECTION The graphic equalisation section is configured around IC2. The input signal comes from the output of IC1 Pin 7 via R66 into the first half of the graphic. The graphic is split into two halves with the first half covering 4 frequency bands and the second half covering the remaining 3. The signal from the first half(IC2 Pin 1) is passed to the second half by resistor R68. Each frequency band of the graphic is composed of one transistor, two capacitors and three resistors forming a resonant circuit (except for the 5kHz band that comprises of only C29 and R41). Taking the 2kHz band as an example, the transistor is TR8, the resistors are R38, R39 and R40 and the two frequency determining capacitors are C27 and C28. This circuit presents a low impedance to the slider of the graphic pot SL6 at its 2kHz centre frequency. Thus, moving the slider down reduces the amount of signal at this frequency reaching Pin 3 of IC2 (the non-inverting input) producing a cut at 2kHz. Moving the slider up reduces the amount of negative feedback via R44 back into Pin 2 of IC2, increasing the gain at 2kHz, producing a boost. The 220pF capacitor C26 is included to increase the stability of the resonant circuit. The two 47pF capacitors C32 and C33 help to prevent any high frequency oscillation or R.F. pick-up. The output of the graphic stage comes from IC2 Pin 7 and is fed back to the graphic "In/Out" switch. This selects either the direct signal out of Pin 7 of IC1 or the signal from the graphic. # SERVICE INFORMATION **GP7/3** #### **EFFECTS SEND RETURN** The signal from the graphic "In/Out" switch is attenuated with resistors R20 and R46 to a suitable level for the "Effects Send" socket. Signals coming back into the "Effects Return" break jack are passed through C90 and R54 to the first half of IC3. This stage has a gain of 10, set by R59 in order to return the signal back to "Line" level. #### **OUTPUT STAGE** The signal from IC3 pin 7 is passed to the "Output Level" pot with C45, C48 and R71 forming a "High Pass" filter to set the low frequency roll off of the preamp output. The signal from the pot is passed to the second half of IC3. This feeds the "Line Out" socket as well as the signal to the PCB connector socket. The "Line Input" socket feeds into the non-Inverting input Pin 3 of IC3 to be mixed with the preamp signal. C43 sets the high frequency limit of the output from the GP7 and R61 sets the gain of this final stage. #### SIGNAL LEVEL INDICATION Transistors TR9, TR10 and TR11 are fed from three separate points throughout the GP7. These three transistors then combine to feed the "Overload LED". In this way, the level is monitored at all critical points in the GP7 to ensure that clipping or distortion cannot take place without the level indication circuit detecting and indicating the fact to the user with the "Overload" LED. A sufficient level of positive signal on the base of one of these transistors will turn it on, pulling down its collector. This causes transistor TR12 to turn on via resistors R55 and R56 lighting the "Overload" LED. As TR12 turns on, its collector is taken to the full positive potential supplied by R70. This is passed via C39 and the three resistors R48, R49 and R52 back to the bases of the three transistors to keep them turned on. This will ensure that, even for the shortest overload spike, the "Overload" LED will light for a sufficient duration to be seen. C47 decouples the supply to prevent spikes caused by the LED turning on from getting back into the supply rail. C50 and C51 help to slow down the fast turn on of TR12 to prevent the otherwise square wave interference from radiating to other parts of the circuit. Diodes D1 to D3 clip off the negative part of the signal that is not used in the circuit. ### PREAMP SUPPLY REGULATION The supply voltage comes into the GP7 PCB on connectors PL1 Pin 4. This is then dropped across R73 to a suitable level for the regulator transistor TR 13. C52 helps to smooth out any ripple on the incoming supply. TR13 (the BD677) is working as a series regulator with its output voltage being set with a 33v zener diode in its base. The voltage across the zener is supplied by R21, and any noise being produced by the zener is decoupled by C83. The output voltage from the regulator is dropped across the potential divider R42/R43 to provide a half supply reference to the op amps. C30 and C31 hold this voltage stable.