John Hornby Skewes Service

ZED series SMPS repair

ZED PSU repair procedure.

When the power supply is removed; firstly, check that C 6 and 7 are fully discharged.
Unfortunately; when switchmode power supplies fail they tend to destroy quite a few components.
For repairing switchmode psu`s, it is recommended you have a 1:1 isolation transformer around 750VA and a variac so that you can wind the voltage up after repair. This should help in case you have missed a failed component and may prevent the PSU failing again as you get nearer to normal mains voltage e.g. $240 \mathrm{~V}, 220 \mathrm{~V}, 120 \mathrm{~V}$ or 100 V .

You will definitely need an accurate multimeter and an oscilloscope. With your multimeter set to diode measurement and with $+15-15$ and +48 V disconnected;

1. check all the diodes in the primary and then the secondary rectification diodes. None should read s / c.
2. remove U1. With your multimeter set to measure resistance, measure across pin 5 and pin 7 on the legs of the IC. If they are s/c then the IC has failed.
3. measure Q1 MOSFET (STP5NB100FB); any s/c reading means the MOSFET has failed. If the MOSFET has failed then R11/12 (0.5R 1W) resistor will more than likely have failed. Also check R7.
4. replace any resistor that looks damaged (i.e. burnt).

It is rare for the bridge rectifier BR1 and NTC or any EMI filter components to fail (but they can), often the mains fuse will rupture F1.

When powering the PSU up after repair, connect it via the variac, powered from the isolation transformer.

Set the variac to 120 V .
Connect the PSU to a load i.e. console.
With your oscilloscope, place the probe next to the heatsink of MOSFET Q1. Neither the probe or ground clip need to be clipped onto a component or PCB. There is such a strong field from the switching MOSFET that just placing the oscilloscope probe next to the heatsink and setting the scope to read something like 5V/div you will see a signal. This will give you a good indication as to whether the PSU is operating correctly. Power up the PSU and look at the oscilloscope waveshape. Refer to figures $1 \& 2$ to give you an indication of good waveshapes at 120 V \& 240 V .

Measure the DC output voltages.
They should be $+48 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
$+15 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$-15 \mathrm{~V} \pm 0.5 \mathrm{~V}$
After the unit has been on for 2 minutes switch off the PSU and check that none of the components are getting too hot to touch. If they are something is still faulty - watch your fingers on C6 and 7 .

If everything is okay; power up the PSU again check the DC voltages and begin increasing the variac voltage. As the ac input voltage increases listen for any odd noises and look at the waveshape change on the oscilloscope screen.

Fig 1: Q2 MOSFET waveshape at 120 V mains input voltage

Fig 2: Q2 MOSFET waveshape at 240 V mains input voltage

When you get to 240 V ; again switch off and check for any components getting too hot to touch.
Finally, power up the PSU on raw mains, and everything should be okay.

Page 4
AC INLET

A FAN IS USED TO COOL THE REGULATOR HEATSINK ON THE ZED-428 AND 436 MODELS

BR1 2KBP206	AE3477	L6 CHOKE 150UH 280MA L7 CHOKE 4.7UH	AM2970 AM3567
C1 47PF 1KV/MLC	AF3075	L8 CHOKE 8MH	AM3560
C2 100N 275V		L8 22mH Choke	AM3466
C3 100N 275V/PEM	AF3073		
C4 150P/DISK		NTC1 INRUSH SUPP NTC20R	
C5 330/10		SIEMENS B57236S200M	AE3478
C6 68uF 400V	AF5616		
C6 180uF 400V		Q1 STP5NB100FP	AE5994
C7			
C10 2N2 250V/PEM		R1 1M2 1/2W	
C11 10/50		R2 12K 1\%	
C12 2N2/MYL		R3 150K	
C14 100N 100V/MLC		R4	
C15 120/63 LESR	AF3464	R5 3K3 1\%	
C16 120/63 LESR		R6 150K 1W*	
C17 470/25 LESR		R7 22R	
C18 470/25 LESR	AF3462	R8 100K 1\%	
C19 470/25 LESR		R9 680R	
C20 470/25 LESR		R10 1K0	
C21 470/25		R11 0R5 1W	AC5757
C22 100/25		R12 0R5 1W	AC5757
C23 100/25		R13 68R	
C24 330P/DISK		R14 12K 1\%	
C25 470/25		R15 15K	
C26 47/63		R16 180R	
C27 47/63		R17 6K8 1\%	
C28 1/63		R18 68R	
C29 100N 275V/PEM		R19 150K 1W	
C30 2N2 250V/PEM	AF3548		
C31 2N2 250V/PEM		SW1	AL3338
CN1 IEC MAINS INLET	AL3179	TX1 XFRMR E/30/15/7A (UNI)	AM5547
D1 BYV26E	AE3470	U1 UC3842AN	AE3473
D2 BYV27-400	AE3469	U2 TL783	AE0214
D3 BYV27-400	AE3469	U3 7815	AE0047
D4 BYV27-400	AE3469	U4 7915	AE0048
D5 1V5KE200A	AE5960		
D6 BYV26E	AE3470		
D7 BYV27-4000	AE3469		
D8 1N4002			
D9 1N5819	AE3914		
F1 FUSE HOLDER	AL3178		
F2 1.3A 60V 1.3A 60VPTC RESETTABLE SCHURTER AL5598			
FAN			
HS1 HEATSINK W3-PSU	AA5675		
HEATSINK ZED4-PSU	AA6987		
HC1 HEATSINK CLIP DL1	AB3445		
L2 CHOKE 8MH	AM3560		
L3 4.7uH	AM3567		
L5 4.7uH	AM3567		

