Agree with the previous comment.
You won't find any model that is specific to a JJ 6V6, the tolerances far exceed the differences between types. This is the best model that I am aware of:
Code:
.SUBCKT 6V6GT 1 2 3 4 ; A G2 G1 C;
* Extract V1.980
* Model created: 7-Jun-2014
* NOTE: LOG(x) is base e LOG or natural logarithm.
* For some Spice versions, e.g. MicroCap, this has to be changed to LN(x).
X1 1 2 3 4 BTetrodeDE MU= 10.56 EX=1.306 kG1= 609.8 KP= 47.9 kVB = 2171.5 kG2=17267.3
+Sc=.81E-01 ap= .013 w= 18. nu= .92 lam= 5.7
+ Ookg1mOokG2=.158E-02 Aokg1=.57E-06 alkg1palskg2=.158E-02 be= .068 als= 18.72 RGI=2000
+ CCG1=9.0P CCG2 = 0.0p CPG1 = 0.7p CG1G2 = 0.0p CCP=7.5P ;
.ENDS
****************************************************
.SUBCKT BTetrodeDE 1 2 3 4; A G2 G1 C
RE1 7 0 1MEG ; DUMMY SO NODE 7 HAS 2 CONNECTIONS
E1 7 0 VALUE=
+{V(2,4)/KP*LOG(1+EXP(KP*(1/MU+V(3,4)/SQRT(KVB+V(2,4)*V(2,4)))))}
E2 8 0 VALUE = {Ookg1mOokG2 + Aokg1*V(1,4) - alkg1palskg2*Exp(-be*V(1,4)*SQRT(be*V(1,4)))}
E3 9 0 VALUE = {Sc/kG2*V(1,4)*(1+tanh(-ap*(V(1,4)-V(2,4)/lam+w+nu*V(3,4))))}
G1 1 4 VALUE = {0.5*(PWR(V(7),EX)+PWRS(V(7),EX))*(V(8)-V(9))}
G2 2 4 VALUE = {0.5*(PWR(V(7),EX)+PWRS(V(7),EX))/KG2 *(1+als*Exp(-be*V(1,4) * SQRT(be*V(1,4))))}
RCP 1 4 1G ; FOR CONVERGENCE A - C
C1 3 4 {CCG1} ; CATHODE-GRID 1 C - G1
C4 2 4 {CCG2} ; CATHODE-GRID 2 C - G2
C5 2 3 {CG1G2} ; Grid 1-GRID 2 G1 - G2
C2 1 3 {CPG1} ; GRID 1-PLATE G1 - A
C3 1 4 {CCP} ; CATHODE-PLATE A - C
R1 3 5 {RGI} ; FOR GRID CURRENT G1 - 5
D3 5 4 DX ; FOR GRID CURRENT 5 - C
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N)
.ENDS BTetrodeDE
Bookmarks