I am having trouble trying to figure out just what in the fuck a cathode follower is. I found this information:
And this
... wtf? The "load" is the OT.
The cathode follower is typically used where a low impedance output is desired, since the output impedance of most valve circuits is rather high (equal to the value of the plate load resistor). Simply attaching a low impedance load to a voltage amplifier stage will cause the output level to be dramatically reduced, so the current amplifier (cathode follower) is a useful stage. The output impedance of the circuit of Figure 1.3 can be expected to be about 1/10th the value of the cathode resistance Rk2 - but this is highly dependent on the valve itself, and its operating current. The available current is very low, so the circuit will not be able to drive a load much less than Rk2, or 47k. Remember that output impedance and drive capability are not related.
since—as compared to a grounded-cathode amplifier—the cathode follower offers a much lower output impedance (Zo), the output transformer’s winding ratio can be equally reduced, allowing the use of 500-ohm primary instead of the 5,000-ohm primary needed for a grounded-cathode amplifier. Right? Absolutely dead wrong! It is as wrong as believing that holding a magnifying glass over a gold coin will not only make the coin appear larger, but weigh more as well. Just as the coin’s actual size and weight remain unaltered, the triode’s transconductance (gm), amplification factor (mu), and plate resistance (rp) remain unaltered, as nothing inside the tube’s envelope has changed.
The topology changes, not the tube’s internal functioning. The tube has no idea what circuit topology it finds itself in; it only knows plate, grid, and cathode voltages and currents. If we want to change the tube’s rp or gm, we have to break the glass envelope’s seal and alter the tube’s internal structure.
So what value primary impedance is best for a push-pull or single-ended cathode-follower-based power amplifier? The answer: use the same (I repeat, the exact same) impedance that you would use had the transformer connected to the plates in a grounded-cathode amplifier. Cathode-follower operation does not change the IV (the current/voltage) dynamics that the tube must undergo nor does it artificially lower the tube’s intrinsic rp.
The topology changes, not the tube’s internal functioning. The tube has no idea what circuit topology it finds itself in; it only knows plate, grid, and cathode voltages and currents. If we want to change the tube’s rp or gm, we have to break the glass envelope’s seal and alter the tube’s internal structure.
So what value primary impedance is best for a push-pull or single-ended cathode-follower-based power amplifier? The answer: use the same (I repeat, the exact same) impedance that you would use had the transformer connected to the plates in a grounded-cathode amplifier. Cathode-follower operation does not change the IV (the current/voltage) dynamics that the tube must undergo nor does it artificially lower the tube’s intrinsic rp.
Comment