<My explanation is the following:
When using the tap as output, the disengaged part of the winding is still there and remains to be inductively coupled with the rest of the coil. It becomes the secondary of a transformer. This secondary appears to be open but is actually terminated by its own self-capacitance. The latter gets transformed/reflected to the primary side (the active part of the coil). And thus the reflected capacitance of the secondary adds to the capacitance of the primary - as long as you don't physically remove the disengaged part of the winding from the pickup.
This effect does not depend on electrical connection between the coil parts.>
When using the tap as output, the disengaged part of the winding is still there and remains to be inductively coupled with the rest of the coil. It becomes the secondary of a transformer. This secondary appears to be open but is actually terminated by its own self-capacitance. The latter gets transformed/reflected to the primary side (the active part of the coil). And thus the reflected capacitance of the secondary adds to the capacitance of the primary - as long as you don't physically remove the disengaged part of the winding from the pickup.
This effect does not depend on electrical connection between the coil parts.>
http://www.datatronics.com/pdf/distr...ance_paper.pdf
is a good description of the summing-up of distributed capacitances of coupled windings.
Comment