The current in the field or exciter coil creates an ac magnetic field that induces a voltage, not a current, in series with the pickup coil. This follows from Maxwell's equation or the law of magnetic induction. Current flows if there is a load on the coil, such as the coil capacitance or the loading caused by eddy currents in the cores, etc. (A so called current transformer is a tightly coupled transformer driven from a high impedance so that the current in the secondary is related to that in the primary by the turns ratio. The very loosely coupled situation here does not behave that way.)
You describe one way to make the current through the field coil independent of frequency: make the inductive reactance low compared to the dc resistance of the coil across the whole useful frequency range. A better way is to drive the coil with a current source, that is, a circuit with an output impedance much higher than the impedance of the coil at any useful frequency.
You describe one way to make the current through the field coil independent of frequency: make the inductive reactance low compared to the dc resistance of the coil across the whole useful frequency range. A better way is to drive the coil with a current source, that is, a circuit with an output impedance much higher than the impedance of the coil at any useful frequency.
Any pair of coupled coils can be descibed as a (non-ideal) transformer. And a transformer is able to transform voltage and current as well as Z,R,L,C. Loose coupling causes reduced voltages and deviations from the ideal turns ratio relations. But the principle works nevertheless.
The idea behind the method is to generate a frequency-independent current in the inductance part of the PU. Constant current through the inductance produces a voltage across the inductance rising linearly with frequency, just like in real PU operation, where the voltage is induced via dPhi/dt.
This constant current is the input test signal and must flow through the load consisting of DCR and capacitance. The output signal is the voltage developed across the capacitance/terminals.
The method is best descibed via the current transformer principle. And if done carefully it works just fine, as can be most easily seen by the straight horizontal line behaviour of the integrated output voltage. My explanations are in line with Lemme and Zollner.
Your are right, generating the constant current via the constant current driven field coil is nothing but a constant current source. And it could be replaced by an (active) wide band CCS if there were direct access to the inductance part of the PU, which is not.
Feeding a constant current to the (output) terminals of the PU inevitably yields the two-pole/two-terminal impedance response. This is different from the quadripole transfer response revealed by the descibed method.
I don't pretend, though, that the transfer response reveals information not available from the impedance response.
Comment