This discussion is suggested by the recent one on the Hantek 1833c, a meter that can measure using frequencies as high as 100 KHz, and it is about making use of the ability to measure impedance versus frequency above 20KHz, especially capacitance. This first post describes why I want to measure pickup capacitance, and then evaluates my measurement technique for measuring impedance (Z) versus frequency (f) well beyond 20KZ. Finally it shows that the method for extracting C from Z (a method to be described in a later post) allows the goals of the measurement to be met, a characterization of the effects of eddy currents.
I agree with Helmholtz comments in that other discussion that the the player has little need to know the C of a pickup; it is swamped by cable capacitance and the guitar sound can be varied easily by cable selection. I also agree with Joe Gwinn, who said that the purpose of measuring C is related to pickup design. In particular, I want to rate pickups according eddy current effects as a function of frequency. My method for accomplishing this needs a good measurement of C. I have done this before by making a mathematical model of eddy current loss and including it with the other parameters and fitting everything at once. What I want now is a way of measuring C (not perfectly, but with sufficient accuracy) to reveal the effects of the eddy currents without having to model them. This is possible with higher frequency measurements that reveal more information about C without so much contamination from the inductance.
The first attachment shows the impedance up to a frequency of 80 KHz (based at a sampling rate of 192 KHz) of a humbucker screw coil with very short leads and removed from the base plate. This is a brand X pickup made in Japan some years ago. It is not possible to say much about eddy current effects from looking at this plot, and so there is some way to go to meet the goals of the project!.
Now it is necessary to determine how well the instrument (an Apogee Element 24 and computer) works for measuring capacitance. The second attachment shows the admittance of a test measurement. (Admittance (Y) is the reciprocal of Z, Y = 1/Z. It is a straight line with positive slope for a capacitor. It is good to display Y rather than Z for a capacitor since it is easy to see deviations from a straight line.) The measurement looks good up to a bit beyond 70KHz. The line starts bending down beyond that. The derived C value agrees well with the Extech. This value is determined by fitting a function to the measured data as a function of frequency. The description of this is coming in a later post.
Eddy currents reduce the apparent inductance of the pickup coil, more with with increasing frequency. The imaginary part of Z for an inductor is a straight line with positive slope. When eddy currents are present, their effects increase with frequency and the line bends a bit in the downward direction. We expect the effect to be present in the data displayed in the first attachment, but obscured by the effect of the capacitance. But if we know the capacitance, we can remove its effect on the measured impedance. The pickup is an L in series with an R all in parallel with a C. Admittances add for devices in parallel, also we have Ypm = 1./(j *w*L + R) + j*w*C. We use w for omega = 2*pi*f. Ypm is just 1/Zpm, the measured data. From that we subtract j*w*C, using the measured value of C. This leaves the first term; take its reciprocal to get an impedance, easiest for viewing an inductance, and we get R + j*w*L where both L and R might vary with frequency. If there are no eddy currents the imaginary part of this should be a straight line, and this line should match the line found by taking the low frequency inductance, call it Lcoil, and making j*w*Lcoil. If there are eddy currents, the measured data as a function of frequency should bend downward from j*w*Lcoil.
To begin testing this, we take the screws out of the humbucker coil (to remove the eddy current loss), measure the impedance, and do the calculations described in the previous paragraph. The results are shown in the next attached plot. The good agreement of the dashed and colored line over the entire audio range suggests the the measured value for C is good, that is, as good as we need it to be. (The determination of C used measurements between 20KHz and 40KHz only; use of higher frequencies will be investigated later.)
Repeat the measurements and calculation with the screws installed, and we get the the last attached plot. The measured C is very nearly the same. This probably means (subject to additional verification) that C changes little or not at all when eddy currents are introduced and that the position of the vertical line below the dashed line is a measure of the eddy current effect as a function of frequency.
The next post will describe how C is found from the measured Z, or actually Y.
I agree with Helmholtz comments in that other discussion that the the player has little need to know the C of a pickup; it is swamped by cable capacitance and the guitar sound can be varied easily by cable selection. I also agree with Joe Gwinn, who said that the purpose of measuring C is related to pickup design. In particular, I want to rate pickups according eddy current effects as a function of frequency. My method for accomplishing this needs a good measurement of C. I have done this before by making a mathematical model of eddy current loss and including it with the other parameters and fitting everything at once. What I want now is a way of measuring C (not perfectly, but with sufficient accuracy) to reveal the effects of the eddy currents without having to model them. This is possible with higher frequency measurements that reveal more information about C without so much contamination from the inductance.
The first attachment shows the impedance up to a frequency of 80 KHz (based at a sampling rate of 192 KHz) of a humbucker screw coil with very short leads and removed from the base plate. This is a brand X pickup made in Japan some years ago. It is not possible to say much about eddy current effects from looking at this plot, and so there is some way to go to meet the goals of the project!.
Now it is necessary to determine how well the instrument (an Apogee Element 24 and computer) works for measuring capacitance. The second attachment shows the admittance of a test measurement. (Admittance (Y) is the reciprocal of Z, Y = 1/Z. It is a straight line with positive slope for a capacitor. It is good to display Y rather than Z for a capacitor since it is easy to see deviations from a straight line.) The measurement looks good up to a bit beyond 70KHz. The line starts bending down beyond that. The derived C value agrees well with the Extech. This value is determined by fitting a function to the measured data as a function of frequency. The description of this is coming in a later post.
Eddy currents reduce the apparent inductance of the pickup coil, more with with increasing frequency. The imaginary part of Z for an inductor is a straight line with positive slope. When eddy currents are present, their effects increase with frequency and the line bends a bit in the downward direction. We expect the effect to be present in the data displayed in the first attachment, but obscured by the effect of the capacitance. But if we know the capacitance, we can remove its effect on the measured impedance. The pickup is an L in series with an R all in parallel with a C. Admittances add for devices in parallel, also we have Ypm = 1./(j *w*L + R) + j*w*C. We use w for omega = 2*pi*f. Ypm is just 1/Zpm, the measured data. From that we subtract j*w*C, using the measured value of C. This leaves the first term; take its reciprocal to get an impedance, easiest for viewing an inductance, and we get R + j*w*L where both L and R might vary with frequency. If there are no eddy currents the imaginary part of this should be a straight line, and this line should match the line found by taking the low frequency inductance, call it Lcoil, and making j*w*Lcoil. If there are eddy currents, the measured data as a function of frequency should bend downward from j*w*Lcoil.
To begin testing this, we take the screws out of the humbucker coil (to remove the eddy current loss), measure the impedance, and do the calculations described in the previous paragraph. The results are shown in the next attached plot. The good agreement of the dashed and colored line over the entire audio range suggests the the measured value for C is good, that is, as good as we need it to be. (The determination of C used measurements between 20KHz and 40KHz only; use of higher frequencies will be investigated later.)
Repeat the measurements and calculation with the screws installed, and we get the the last attached plot. The measured C is very nearly the same. This probably means (subject to additional verification) that C changes little or not at all when eddy currents are introduced and that the position of the vertical line below the dashed line is a measure of the eddy current effect as a function of frequency.
The next post will describe how C is found from the measured Z, or actually Y.
Comment